熔盐与亚临界汽/水在管壳换热器中传热特性实验研究

董新宇, 陈梦淑, 刘璐

太阳能学报 ›› 2023, Vol. 44 ›› Issue (3) : 489-496.

PDF(1758 KB)
欢迎访问《太阳能学报》官方网站,今天是
PDF(1758 KB)
太阳能学报 ›› 2023, Vol. 44 ›› Issue (3) : 489-496. DOI: 10.19912/j.0254-0096.tynxb.2021-1204

熔盐与亚临界汽/水在管壳换热器中传热特性实验研究

  • 董新宇, 陈梦淑, 刘璐
作者信息 +

EXPERIMENTAL INVESTIGATION ON HEAT TRANSFER CHARACTERISTIC OF MOLTEN SALT AND SUBCRITICAL STEAM/WATER IN TUBE-SHELL HEAT EXCHANGER

  • Dong Xinyu, Chen Mengshu, Liu Lu
Author information +
文章历史 +

摘要

以太阳盐(Solar Salt)为工质,实验研究熔盐与过热蒸汽/亚临界水在管壳式换热器中的流动传热特性,并开展管侧及壳侧流量、入口温度、压强等参数对熔盐流动传热的敏感性研究。实验结果表明,熔盐入口温度对其传热规律影响较大。根据传热相似原理,获得熔盐与单相汽、水传热的修正关联式,其与实验值的最大偏差分别为±10%,-15%。

Abstract

A binary mixture solar salt was used as a working fluid to experimentally study the heat transfer characteristics of molten salt and subcritical steam/water in a tube-shell heat exchanger. The sensitivity of flow, inlet temperature, pressure and other parameters on pipe side and shell side to the heat transfer of molten salt flow was studied. The experimental results show that the molten salt inlet temperature has a greater influence on the heat transfer law. Based on the experimental data and the multivariate linear fitting method, the heat transfer correlation between molten salt and subcritical water or steam across the tube bundle is proposed. The maximum fitting errors are ±10%,-15%, respectively.

关键词

溶盐 / 汽/水 / 管壳式换热器 / 传热特性 / 关联式

Key words

molten salt / steam/water / tube-shell heat exchanger / heat transfer characteristics / correlation

引用本文

导出引用
董新宇, 陈梦淑, 刘璐. 熔盐与亚临界汽/水在管壳换热器中传热特性实验研究[J]. 太阳能学报. 2023, 44(3): 489-496 https://doi.org/10.19912/j.0254-0096.tynxb.2021-1204
Dong Xinyu, Chen Mengshu, Liu Lu. EXPERIMENTAL INVESTIGATION ON HEAT TRANSFER CHARACTERISTIC OF MOLTEN SALT AND SUBCRITICAL STEAM/WATER IN TUBE-SHELL HEAT EXCHANGER[J]. Acta Energiae Solaris Sinica. 2023, 44(3): 489-496 https://doi.org/10.19912/j.0254-0096.tynxb.2021-1204
中图分类号: TK124   

参考文献

[1] MEHOS M, TURCHI C, VIDAL J, et al.Concentrating solar power Gen3 demonstration roadmap[R]. Golden: Renewable Energy Laboratory, 2017.
[2] ROBERTSON R C.MSRE design and operations report. Part i: description of reactor design[R]. Knoxville: Oak Ridge National Laboratory, 1965.
[3] KIRST W E, NAGLE W M, CASTNER J B.A new heat transfer medium for high temperatures[J]. Transactions of the Institution of Chemical Engineers, 1940, 36: 371-394.
[4] HOFFMAN H W, COHEN S I.Fused salt heat transfer: part III: forced-convection heat transfer in circular tubes containing the salt mixture NaNO2-NaNO3-KNO3[R]. Knoxville: Oak Ridge National Laboratory, 1960.
[5] GRELE M D, GEDEON L.Forced-convection heat-transfer characteristics of molten FLiNaK flowing in an Inconel X system[R]. Washington: National Advisory Committee for Aeronautics, 1954.
[6] HOFFMAN H W, LONES J.Fused salt heat transfer. Part ii: forced convection heat transfer in circular tubes containing NaF-KF-LiF eutectic[R]. Knoxville: Oak Ridge National Laboratory, 1955.
[7] COOKE J W, COX B W.Forced-convection heat transfer measurements with a molten fluoride salt mixture flowing in a smooth tube[R]. Knoxville: Oak Ridge National Laboratory, 1973.
[8] SILVERMAN M D, HUNTLEY W R, Robertson H E.Heat transfer measurements in a forced convection loop with two molten-fluoride salts LiF-BeF2-ThF2-UF4 and eutectic NaBF4-NaF[R]. Knoxville: Oak Ridge National Laboratory, 1976.
[9] 叶猛. LiNO3熔盐水平管内强制对流换热实验研究[D]. 北京: 北京工业大学, 2008.
YE M.Experimental investigation of the forced convection heat transfer of molten salt in ahorizontal tube[D]. Beijing: Beijing University of Technology, 2008.
[10] ZHANG S, SUN X D, ELVIS E D.Numerical study on convective heat transfer and friction characteristics of molten salts in circular tubes[J]. Annals of nuclear energy, 2020, 142: 107375.
[11] 董新宇, 姚凡, 毕勤成. 熔融盐-亚临界汽/水传热性能实验分析[J]. 中国电机工程学报, 2018, 38(15): 4467-4473, 4647.
DONG X Y, YAO F, BI Q C.Experimental investigation of heat transfer performance of solar salt and subcritical water/steam[J]. Proceedings of the CSEE, 2018, 38(15): 4467-4473, 4647.
[12] WU Y T, LIU B, MA C F, et al.Convective heat transfer in the laminar-turbulent transition region with molten salt in a circular tube[J]. Experimental thermal and fluid science, 2009, 33(7): 1128-1132.
[13] LIU B, WU Y T, MA C F, et al.Turbulent convective heat transfer with molten salt in a circular pipe[J]. International communications in heat and mass transfer, 2009, 36(9): 912-916.
[14] WU Y T, CHEN C, LIU B, et al.Investigation on forced convective heat transfer of molten salts in circular tubes[J]. International communications in heat and mass transfer, 2012, 39(10): 1550-1555.
[15] SRIVASTAVA A K, VAIDYA A M, MAHESHWARI N K, et al.Heat transfer and pressure drop characteristics of molten fluoride salt in circular pipe[J]. Applied thermal engineering, 2013, 61(2): 198-205.
[16] 文玉良, 丁静, 杨晓西, 等. 高温熔盐横纹管传热特性与强化机理研究[J]. 工程热物理学报, 2010, 31(1): 113-115.
WEN Y L, DING D, YANG X X, et al.Heat transfer characteristic and enhanced mechanism of high-temperature molten salt in transverse corrugated tubes[J]. Journal of engineering thermophysics, 2010, 31(1): 113-115.
[17] CHEN C, WU Y T, WANG S T, et al.Experimental investigation on enhanced heat transfer in transversally corrugated tube with molten salt[J]. Experimental thermal and fluid science, 2013, 47: 108-116
[18] CHEN Y S, TIAN J, FU Y, et al.Experimental study of heat transfer enhancement for molten salt with transversely grooved tube heat exchanger in laminar-transition-turbulent regimes[J]. Applied thermal engineering, 2018, 132: 95-101.
[19] YANG M L, YANG X X, YANG X P, et al.Heat transfer enhancement and performance of the molten salt receiver of a solar power tower[J]. Applied energy, 2010, 87(9): 2808-2811.
[20] LU J F, SHENG X Y, DING J, et al.Convective heat transfer of high temperature molten salt in transversely grooved tube[J]. Applied thermal engineering, 2013, 61(2): 157-162.
[21] LU J F, SHENG X Y, DING J, et al.Transition and turbulent convective heat transfer of molten salt in spirally grooved tube[J]. Experimental thermal and fluid science, 2013, 47: 180-185.
[22] UEKI Y, FUJITA N, KAWAI M, et al.Molten salt thermal conductivity enhancement by mixing nanoparticles[J]. Fusion engineering and design, 2018, 136: 1295-1299.
[23] CHEN H, CHEN X, WU Y T, et al.Experimental study on forced convection heat transfer of KNO3-Ca(NO3)2+SiO2 molten salt nanofluid in circular tube[J]. Solar energy, 2020, 206: 900-906.
[24] YING Z P, HE B S, SU LB, et al.Convective heat transfer of molten salt-based nanofluid in a receiver tube with non-uniform heat flux[J]. Applied thermal engineering, 2020, 181: 115922.
[25] HE S Q, LU J F, DING J, et al.Convective heat transfer of molten salt outside the tube bundle of heat exchanger[J].Experimental thermal and fluid science, 2014, 59: 9-14.
[26] LU J F, HE S Q, DING J, et al.Convective heat transfer of high temperature molten salt in a vertical annular duct with cooled wall[J]. Applied thermal engineering, 2014, 73(2): 1519-1524.
[27] QIAN J, KONG Q L, ZHANG H W, et al.Experimental study for shell-and-tube molten salt heat exchangers[J]. Applied thermal engineering, 2017, 124: 616-623.
[28] HE Y L, ZHENG Z J, DU B C, et al.Experimental investigation on turbulent heat transfer characteristics of molten salt in a shell-and-tube heat exchanger[J]. Applied thermal engineering, 2016, 108: 1206-1213.
[29] DU B C, HE Y L, QIU Y, et al.Investigation on heat transfer characteristics of molten salt in a shell-and-tube heat exchanger[J]. International communications in heat and mass transfer, 2018, 96: 61-68.
[30] DU B C, HE Y L, WANG K, et al.Convective heat transfer of molten salt in the shell-and-tube heat exchanger with segmental baffles[J]. International journal of heat and mass transfer, 2017, 113: 456-465.
[31] QIAN J, KONG Q L, ZHANG H W, et al.Performance of a gas cooled molten salt heat exchanger[J]. Applied thermal engineering, 2016, 108: 1429-1435.
[32] QIU Y, LI M J, WANG W Q, et al.An experimental study on the heat transfer performance of a prototype molten-salt rod baffle heat exchanger for concentrated solar power[J]. Energy, 2018, 156: 63-72.
[33] YUAN Y B, HE C M, LU J F, et al.Thermal performances of molten salt steam generator[J]. Applied thermal engineering, 2016, 105: 163-169.
[34] ZOU Y K, DING J, WANG W L, et al.Heat transfer performance of U-tube molten salt steam generator[J]. International journal of heat and mass transfer, 2020, 160: 120200.
[35] LU J F, LIU Z, ZOU Y K, et al.Experimental thermal performance study of molten salt steam generator-superheater with saturated water[J]. International journal of heat and mass transfer, 2021, 168: 120884.
[36] 惠姣, 鲁莉, 董新宇. 熔盐横掠管束传热特性实验研究[J]. 热能动力工程, 2020, 35(12): 115-120.
HUI J, LU L, DONG X Y.Experimental investigation on heat transfer chacteristic of molten salt flow across tubes[J]. Journal of engineering for thermal energy and power, 2020, 35(12): 115-120.
[37] 董新宇, 毕勤成, 姜梦雨. 熔盐在套管换热器中传热特性实验研究[J]. 中国电机工程学报, 2021, 41(19):6670-6679.
DONG X Y, BI Q C, JIANG M Y.Experimental investigation of heat transfer performance of molten salt in double-pipe heat exchanger[J]. Proceedings of the CSEE,2021, 41(19): 6670-6679.
[38] KLINE S J, MCCLINTOCK F A.Describing uncertainties in single-sampleexperiments[J]. Mechanical engineering, 1953, 75: 3-8.

基金

河北省自然科学基金(E2022502002)

PDF(1758 KB)

Accesses

Citation

Detail

段落导航
相关文章

/