针对现货市场交易机制下新能源送出型电网风电不确定性对电网调峰附加成本影响,提出考虑调峰附加成本的电网电价动态优化模型,为火电、储能和电热联合需求响应等调峰资源参与电网调峰提供灵活的电价信号,保障现货交易市场出清价格的准确性,同时提高各电力主体对新能源的消纳能力和系统碳减排能力。首先,以新能源送出型电网为基础,研究考虑风电不确定性的电网调峰需求量化方法,并建立火电、储能和电热联合需求响应等调峰资源的调峰附加成本模型;其次,研究现货市场中各电力主体的竞价策略,考虑调峰附加成本交易机制,建立以最小化运行成本为目标的现货市场出清模型,并采用合作博弈算法对模型进行求解,计算新能源送出型电网各主体出清价格;最后,以东北某新能源送出型电网实际运行数据为例进行仿真验证,结果表明所提出的考虑调峰附加成本的电网价格动态优化模型能有效提升电网对新能源的消纳能力,保障电力现货市场的高效稳定运行。
Abstract
In view of the influence of wind power uncertainty on additional cost of peak load regulation in new energy sending power grid under spot market trading mechanism, a dynamic optimization model of power grid price considering additional cost of peak load regulation is proposed, which provides flexible price signal for peak load regulation resources such as thermal power, energy storage and combined demand response of electricity and heat to participate in peak load regulation of power grid, ensures the accuracy of clearing price in spot market, and improves the ability of each power subject to absorb new energy and system carbon emission reduction. Firstly, based on the new energy transmission grid, the peak shaving demand method considering the uncertainty of wind power is studied, and the additional cost model of peak shaving resources such as thermal power, energy storage and combined demand response of electricity and heat is established. Secondly, the bidding strategy of each power subject in the spot market is studied. Considering the peak shaving additional cost trading mechanism, a spot market clearing model is established to minimize the operating cost, and the cooperative game algorithm is used to solve the model to calculate the clearing price of each subject of the new energy sending power grid. Finally, taking the actual operation data of a new energy sending power grid in Northeast China as an example, the simulation results show that the proposed dynamic optimization model of power grid price considering peak shaving additional cost can effectively improve the power grid’s ability to absorb new energy and ensure the efficient and stable operation of the power spot market.
关键词
新能源电网 /
现货市场 /
调峰 /
附加成本 /
合作博弈
Key words
new energy grid /
spot market /
peak shaving /
additional cost /
cooperative game
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] 杨经纬, 张宁, 王毅, 等. 面向可再生能源消纳的多能源系统: 述评与展望[J]. 电力系统自动化, 2018, 42(4): 11-24.
YANG J W, ZHANG N, WANG Y, et al.Multi-energy system towards renewable energy accommodation: review and report[J]. Automation of electric power systems, 2018, 42(4): 11-24.
[2] 冷欧阳, 回茜, 左浩, 等. 基于多源储能节点拓扑特征的交直流新能源电网功率平衡分区控制[J]. 可再生能源, 2020, 38(10): 1394-1400.
LENG O Y, HUI Q, ZUO H, et al.Power partition control of AC/DC new energy grid based on multi-source energy storage node topology[J]. Renewable energy resources, 2020, 38(10): 1394-1400.
[3] 彭旭, 李好文, 郑岗, 等. 基于时序生产模拟的可再生能源消纳评估方法研究[J]. 太阳能学报, 2020, 41(11): 26-30.
PENG X, LI H W, ZHENG G, et al.Research on renewable energy accommodation assessment method based on time series production simulation[J]. Acta energiae solaris sinica, 2020, 41(11): 26-30.
[4] 滕云, 张铁岩, 陈哲. 多能源互联系统优化运行与控制技术研究现状与前景展望[J]. 可再生能源, 2018, 36(3): 467-474.
TENG Y, ZHANG T Y, CHEN Z.Review of operation optimization and control of multi-energy interconnection system based on micro-grid[J]. Renewable energy resources, 2018, 36(3): 467-474.
[5] 王晛, 张凯, 张少华, 等. 风电参与投标竞争的多能源市场博弈分析[J]. 太阳能学报, 2021, 42(1): 279-285.
WANG X, ZHANG K, ZHANG S H, et al.Game analysis of multi-energy markets considering wind power bidding[J]. Acta energiae solaris sinica, 2021, 42(1): 279-285.
[6] 程基峰, 贠靖洋, 严正, 等. 富余风电参与调峰权交易的电力市场均衡分析[J]. 电网技术, 2019, 43(8): 2702-2710.
CHENG J F, YUAN J Y, YAN Z, et al.Equilibrium analysis of peak regulation right trading market between wind farms and thermal power plants considering deep peak regulation[J]. Power system technology, 2019, 43(8): 2702-2710.
[7] 德格吉日夫, 谭忠富, 杨莘博, 等. 电力市场环境下考虑投标决策的微电网运行鲁棒优化[J]. 可再生能源, 2018, 36(11): 1697-1703.
DE G J R F, TAN Z F, YANG S B, et al. Robust optimization of micro-grid operation considering bidding decisions in electricity market environment[J]. Renewable energy resources, 2018, 36(11): 1697-1703.
[8] 丛野, 张粒子, 陶文斌. 计及电力现货市场竞争效率的输电定价机制量化评价方法[J]. 中国电机工程学报, 2020, 40(21): 6925-6936.
CONG Y, ZHANG L Z, TAO W B.Quantitative evaluation method of transmission pricing mechanism under circumstance of electricity spot market[J]. Proceedings of the CSEE, 2020, 40(21): 6925-6936.
[9] 房欣欣, 杨知方, 余娟, 等. 节点电价的理论剖析与拓展[J]. 中国电机工程学报, 2020, 40(2): 379-390.
FANG X X, YANG Z F, YU J, et al.Theoretical analysis and extension of locational marginal price[J]. Proceedings of the CSEE, 2020, 40(2): 379-390.
[10] 彭超逸, 顾慧杰, 朱文, 等. 交直流混联区域电网现货市场出清模型研究[J].电网技术, 2020, 44(1): 323-331.
PENG C Y, GU H J, ZHU W, et al.Study on spot market clearing model of regional power grid considering AC/DC hybrid connection[J]. Power system technology, 2020, 44(1): 323-331.
[11] 林晓凡, 曾佳妮, 冯冬涵. 可再生能源消纳责任权重制下电力市场优化决策模型[J]. 电力系统自动化, 2021, 45(6): 158-168.
LIN X F, ZENG J N, FENG D H.Optimization decision model of electricity market under renewable portfolio standards[J]. Automation of electric power systems, 2021, 45(6): 158-168.
[12] 郑云飞, 熊志, 王博, 等. 考虑最优消纳区间的区域能源聚合商博弈策略[J]. 现代电力, 2022, 39(1): 64-71.
ZHENG Y F, XIONG Z, WANG B, et al.Game strategy of regional energy aggregators considering optimal accommodation interval[J]. Modern electric power, 2022, 39(1): 64-71.
[13] 冷钊莹, 陈中, 邢强. 基于负荷类型细分的负荷聚合商日前投标非合作博弈模型[J]. 电网与清洁能源, 2020, 36(5): 17-28.
LENG Z Y, CHEN Z, XING Q.Day-ahead bidding model of load aggregators based on load type subdivision and non-cooperative game[J]. Power system and clean energy, 2020, 36(5): 17-28.
[14] 潘华, 梁作放, 薛强中, 等. 基于分时电价的含风-光-气-储虚拟电厂经济调度[J]. 太阳能学报, 2020, 41(8): 115-122.
PAN H, LIANG Z F, XUE Q Z, et al.Economic dispatch of wind/PV/gas/storage virtual power plant based on time-of-use power price[J]. Acta energiae solaris sinica, 2020, 41(8): 115-122.
基金
国家电网公司科技项目(526601200005)