进一步发展和完善叶片部件尺度的测试方法,开展复合材料腹板结构试样在压缩载荷下的实验与数值分析,从内部揭示腹板结构试样的屈曲过程和失效机理。结果表明,复合材料腹板结构具有典型的屈曲特征,在后屈曲阶段,芯材材料屈服压碎导致的试样局部大变形是试件失去主要承载能力的主要原因,而试件制造过程中产生的材料分布不均匀等因素带来的初始缺陷是造成结构响应非线性和试件屈曲失稳的根本原因。
Abstract
This research further develops and improves the test method of blade component size, experimental and numerical researches have been carried out on the composite web component specimens under compressive loads, and reveal the buckling failure mechanism of the web structure sample from the inside. The research reveals that the composite web specimen has typical buckling characteristics. In the post-buckling stage, the large local deformation of the specimen caused by the yield and crushing of the core material is the main reason that the specimen loses its principal load-bearing capacity. The underlying source of nonlinear structural response and buckling instability of the specimen is the initial flaws created by variables such as uneven material distribution during the production process.
关键词
风电叶片 /
三明治结构 /
压缩测试 /
屈曲
Key words
wind turbine blades /
sandwich structures /
compression testing /
buckling
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] CHEN X, ZHAO W, ZHAO X L, et al.Failure test and finite element simulation of a large wind turbine composite blade under static loading[J]. Energies, 2014, 7(4): 2274-2297.
[2] JENSEN F M, FALZON B G, ANKERSEN J, et al.Structural testing and numerical simulation of a 34m composite wind turbine blade[J]. Composite structures, 2006, 76(1): 52-61.
[3] JENSEN F M, WEAVER R M, CECCHINI L S, et al.The Brazier effect in wind turbine blades and its influence on design[J]. Wind energy, 2012, 15(2): 319-33.
[4] DAMKILDE L, LUND B.A simplified analysis of the brazier effect in composite beams[C]//Proceedings of Nordic Seminar on Computational Mechanics, Göteborg, Sweden, 2009.
[5] ZAROUCHAS D S, MAKRIS A A, SAYER F, et al.Investigations on the mechanical behavior of a wind rotor blade subcomponent[J]. Composites part B, 2012, 43(2): 647-54.
[6] BRANNER K, BERRING P.Compressive strength of thick composite panels[C]//Proceedings of the 32th Risø International Symposium on Materials Science Proceedings, Roskilde, Denmark, 2011.
[7] LIAO C C, ZHAO X L, XU J Z.Blade layers optimization of wind turbines using FAST and improved PSO algorithm[J]. Renewable energy, 2012, 42: 227-233.
[8] LEE H G, PARK J.Static test until structural collapse after fatigue testing of a full-scale wind turbine blade[J]. Composite structures, 2016, 136: 251-257.
[9] STEVENS K A, RICCI R, DAVIES G A O. Buckling and postbuckling of composite structures[J]. Composites, 1995, 26(3): 189-199.
[10] FEATHERSTON C A, WATSON A.Buckling of optimised flat composite plates under shear and in-plane bending[J]. Composites science and technology, 2005, 65(6): 839-853.
[11] LEONG M, OVERGAARD L, THOMSEN O T, et al.Investigation of failure mechanisms in GFRP sandwich structures with face sheet wrinkle defects used for wind turbine blades[J]. Composite structures, 2012, 94(2): 768-778.
[12] 曹鹏宇,牛康民.夹层结构屈曲模型的拓展及失效判据[J]. 航空学报, 2021, 42(7): 607-617.
CAO P Y, NIU K M.Development of buckling model and failure criterion of sandwich structure[J]. Acta aeronauticaet astronautica sinica, 2021, 42(7): 607-617.
[13] NORLIN P, REUTERLV S.The role of sandwich composites in turbine blades[J]. Reinforced plastics, 2002, 46(3): 32-34.
[14] VEEDU V P, CARLSSON L A.Finite-element buckling analysis of sandwich columns containing a face/core debond[J]. Composite structures, 2005, 69(2): 143-148.
[15] STANLEY G M.Continuum-based shell elements[D]. California: Stanford University, 1985.
[16] DESHPANDE V S, FLECK N A.Multi-axial yield behavior of polymer foams[J]. Acta materialia, 2001, 49(10): 1859-1866.
基金
国家重点研发计划(2018YFB1501201)