应用于光伏并网系统准Z源逆变器的滑模控制策略

田莉, 杨潇洁

太阳能学报 ›› 2023, Vol. 44 ›› Issue (3) : 443-449.

PDF(1918 KB)
欢迎访问《太阳能学报》官方网站,今天是
PDF(1918 KB)
太阳能学报 ›› 2023, Vol. 44 ›› Issue (3) : 443-449. DOI: 10.19912/j.0254-0096.tynxb.2021-1242

应用于光伏并网系统准Z源逆变器的滑模控制策略

  • 田莉, 杨潇洁
作者信息 +

SLIDING MODE CONTROL STRATEGY FOR QUASI-Z-SOURCE INVERTER IN PV GRID-CONNECTED SYSTEM

  • Tian Li, Yang Xiaojie
Author information +
文章历史 +

摘要

针对光伏并网系统可能产生的太阳辐照度变化、系统振荡、抗干扰能力和抗谐波能力不理想等问题,提出电容电压外环采用含有状态变量的积分补偿滑模控制策略以保证Z源电容电压相对稳定,不产生超调和不出现失真;并网电流内环采用改进的切换函数设计滑模控制器,以削弱系统抖振,并网效果得到提高。通过Matlab/Simulink平台建立仿真模型。仿真结果表明,相比PI(比例积分)和PR(比例谐振)控制策略,该方法可增强并网系统的全局鲁棒性,能有效提高系统的动态响应速度和并网电能的质量,且能抑制电网电压的谐波信号。

Abstract

Aiming at the problems such as light intensity change, system oscillation, anti-interference ability and anti-harmonic ability of the photovoltaic grid-connected system, an integral compensation sliding mode control strategy containing state variables is designed for capacitor voltage outer loop to ensure the relative stability of the capacitor voltage without over-harmonic and distortion. A sliding mode controller based improved switching function for the inner loop of grid-connected current to reduce chattering and improve grid-connected effect. Matlab/Simulink platform simulation results verify that the proposed method outperforms the PI and proportional resonance (PR) control strategy, and the proposed method can enhance the global robustness of the grid-connected system, effectively improve the dynamic response speed of the system and the quality of the grid-connected power, and can suppress the harmonic signal of the grid voltage.

关键词

光伏 / 准Z源逆变器 / 滑模控制 / 并网系统 / 鲁棒性 / 抖振

Key words

photovoltaic / quasi-Z source inverter / sliding mode control / grid-connected system / robustness / chattering

引用本文

导出引用
田莉, 杨潇洁. 应用于光伏并网系统准Z源逆变器的滑模控制策略[J]. 太阳能学报. 2023, 44(3): 443-449 https://doi.org/10.19912/j.0254-0096.tynxb.2021-1242
Tian Li, Yang Xiaojie. SLIDING MODE CONTROL STRATEGY FOR QUASI-Z-SOURCE INVERTER IN PV GRID-CONNECTED SYSTEM[J]. Acta Energiae Solaris Sinica. 2023, 44(3): 443-449 https://doi.org/10.19912/j.0254-0096.tynxb.2021-1242
中图分类号: TM7   

参考文献

[1] PENG F Z.Z-source inverter[J]. IEEE transactions on industry applications, 2003, 39(2): 504-510.
[2] NGUYEN M K, LIM Y C, KIM Y G.TZ-source inverters[J]. IEEE transactions on industrial electronics, 2013, 60(12): 5686-5695.
[3] 黄守道, 王连芳, 荣飞, 等. 三相Z源逆变器的模型预测控制[J]. 电力系统及其自动化学报, 2018, 30(12): 19-26.
HUANG S D, WANG L F,RONG F,et al.Model predictive control of three-phase Z source inverter[J]. Proceedings of the CSU-EPSA, 2018, 30(12): 19-26.
[4] 杨水涛, 丁新平, 张帆, 等. Z-源逆变器在光伏发电系统中的应用[J]. 中国电机工程学报,2008, 28(17): 112-118.
YANG S T, DING X P,ZHANG F, et al.Study on Z-source inverter for photovoltaic generation system[J]. Proceeding of the CSEE, 2008, 28(17): 112-118.
[5] 丁明, 王伟胜, 王秀丽, 等. 大规模光伏发电对电力系统影响综述[J]. 中国电机工程学报, 2014, 34(1): 1-14.
DING M, WANG W S, WANG X L, et al.A review on the effect of large-scale PV generation on power systems[J]. Proceedings of the CSEE, 2014, 34(1): 1-14.
[6] CARRASCO J M, FRANQUELO L G, BIALASIEWICZ J T, et al.Power-electronics system for the grid integration of renewable energy sources: a survey[J]. IEEE transactions on industrial electronics, 2006, 53(4): 1002-1016.
[7] 唐杰, 邵武, 孟志强. 应用于光伏系统的准Z源逆变器直通控制策略[J]. 电力系统及其自动化学报, 2020, 32(8): 116-122.
TANG J, SHAO W, MENG Z Q.Straight-through control strategy for photovoltaic system based on quasi-Z source inverter[J]. Proceedings of the CSU-EPSA, 2020, 32(8): 116-122.
[8] TANG Y,XIE S J, ZHANG C H.Improved Z-source inverter with reduced Z-source capacitor voltage stress and soft-start capability[J]. IEEE transactions on power electronics, 2009, 24(2): 409-415.
[9] 李媛, 彭方正. Z源/准Z源逆变器在光伏并网系统中的电容电压恒压控制策略[J]. 电工技术学报, 2010, 26(5): 62-69.
LI Y,PENG F Z.Constant capacitor voltage control strategy of Z-source/quasi-Z-source inverter in grid-connected photovoltaic system[J]. Transactions of Electrotechnical Society, 2010, 26(5): 62-69.
[10] 李军红, 洪镇南. 三相光伏并网系统的滑模变结构控制[J]. 电力系统保护与控制, 2012, 40(12): 83-87.
LI J H, HONG Z N.Sliding modev ariable structure control for three-phase grid-connected photovoltaic system[J]. Power system protection and control, 2012, 40(12): 83-87.
[11] 何翔, 张代润. 基于滑模控制的三相光伏并网逆变器研究[J]. 电源技术, 2014, 38(4): 672-675.
HE X, ZHANG D R.Research on three-phase photovoltaic grid inverter based on sliding mode control[J]. Chinese journal of power sources, 2014, 38(4): 672-675.
[12] 刘吉宏, 刘鹏飞, 张新树, 等. LCL 型光伏并网逆变器全局鲁棒滑模变结构双闭环控制[J]. 可再生能源,2020, 38(11): 1495-1499.
LIU J H, LIU P F, ZHANG X S, et al.Global robust sliding mode variable structure double closed-loop control for grid-connected photovoltaic inverters with LCL filters[J]. Renewable energy resources, 2020, 38(11): 1495-1499.
[13] 陈智勇, 罗安, 陈燕东, 等. 逆变器并联的自适应滑模全局鲁棒电压控制方法[J]. 中国电机工程学报, 2015,35(13): 3272-3282.
CHEN Z Y,LUO A, CHEN Y D, et al.Adaptive sliding-mode global robustness voltage control for islanded parallel inverters[J]. Proceedings of the CSEE, 2015, 35(13): 3272-3282.
[14] 徐志英, 许爱国, 谢少军. 采用LCL滤波器的并网逆变器双闭环入网电流控制技术[J]. 中国电机工程学报,2009, 29(27): 36-41.
XU Z Y, XU A G, XIE S J.Dual-loop current control technique for grid-connected inverter using an LCL filter[J]. Proceedings of the CSEE, 2009, 29(27): 36-41.
[15] 姜慧鹏, 刘宜成, 蒲明, 等. 单相LCL型并网逆变器的滑模控制策略[J]. 微型机与应用, 2016, 35(10): 72-74, 78.
JIANG H P, LIU Y C, PU M, et al.Sliding mode control strategy for single-phase LCL grid-connected inverter[J]. Microcomputers and its applications, 2016, 35(10): 72-74, 78.
[16] 党超亮, 同向前, 宋卫章, 等. LCL滤波型三相并网逆变器的电流滑模控制策略[J]. 电力电子技术, 2021, 55(6): 1-4.
DANG C L, TONG X Q, SONG W Z, et al.Control strategy for three-phase inverter with LCL-type filter based on current sliding mode control method[J]. Power electronic technology, 2021, 55(6): 1-4.
[17] 陈宗祥, 蒋赢, 潘俊民, 等. 基于滑模控制的Z源逆变器在单相光伏系统中的应用[J]. 中国电机工程学报,2008, 28(21): 33-39.
CHEN Z X, JIANG Y, PAN J M,et al.A Z-source inverter for a single-phase PV system based on sliding-mode control[J]. Proceedings of the CSEE, 2008, 28(21): 33-39.
[18] 周雪松, 李康, 马幼捷. DC-DC变换器滑模变结构控制研究[J]. 电力系统及其自动化学报, 2021, 33(3): 11-17.
ZHOU X S, LI K, MA Y J.Research on sliding-mode variable-structure control of DC-DC converter[J]. Proceedings of the CSU-EPSA, 2021, 33(3): 11-17.
[19] PENG F Z,SHEN M S, QIAN Z M.Maximum boost control of the Z-source inverter[J]. IEEE transactions on power electronics, 2005, 20(4): 833-838.
[20] 游国栋, 李继生, 侯勇, 等. 光伏LCL型并网逆变器的积分滑模容错控制策略[J]. 太阳能学报, 2018, 39(4):1008-1017.
YOU G D, LI J S,HOU Y, et al.Integrated sliding mode fault tolerant control strategy for PV LCL grid-connected inverter[J]. Acta energiae solaris sinica, 2018,39(4): 1008-1017.

基金

兰州交通大学-天津大学联合创新基金(2020056)

PDF(1918 KB)

Accesses

Citation

Detail

段落导航
相关文章

/