大型下风向柔性叶片参数化建模及两目标优化设计

许波峰, 李振, 朱紫璇, 蔡新, 王同光, 赵振宙

太阳能学报 ›› 2023, Vol. 44 ›› Issue (3) : 147-154.

PDF(1822 KB)
欢迎访问《太阳能学报》官方网站,今天是
PDF(1822 KB)
太阳能学报 ›› 2023, Vol. 44 ›› Issue (3) : 147-154. DOI: 10.19912/j.0254-0096.tynxb.2021-1247

大型下风向柔性叶片参数化建模及两目标优化设计

  • 许波峰1,2, 李振1, 朱紫璇1, 蔡新2, 王同光3, 赵振宙1,2
作者信息 +

PARAMETRIC MODELING AND TWO-OBJECTIVE OPTIMAL DESIGN OFLARGE-SCALE DOWNWIND FLEXIBLE BLADES

  • Xu Bofeng1,2, Li Zhen1, Zhu Zixuan1, Cai Xin2, Wang Tongguang3, Zhao Zhenzhou1,2
Author information +
文章历史 +

摘要

为了应对超大型风力机的发展对叶片带来的挑战,利用叶片多目标设计方法重点研究大型下风向柔性叶片气动与结构参数的优化设计。构建叶片弦长、扭角和挥舞刚度参数模型,以下风向布局的NREL 5 MW风力机叶片为优化对象,基于快速非支配排序遗传算法开展单机年发电量最大和叶根挥舞弯矩最小的两目标下风向叶片优化设计,得到符合预期的Pareto最优解集。取解集中3套具有代表性的最优解进行分析,由于下风向离心力矩可抵消一部分挥舞弯矩,所以叶根挥舞弯矩均有大幅降低,其中A叶片以牺牲0.963%年发电量的代价,使其叶根挥舞弯矩和叶片挥舞刚度分别减小7.951%和27.071%,可实现大型下风向柔性风轮的轻量化优化设计。以选取的3套叶片为基础,分析弦长、扭角、挥舞刚度对优化目标的影响机制,发现叶片挥舞刚度参数对两优化目标的影响最大。

Abstract

In order to meet the blade design challenge brought by the development of super large wind turbines, the aerodynamic and structural optimization design of the large-scale downwind flexible blade is studied emphatically by the multi-objective design method. The parametric models of chord length, twist angle and flapping stiffness are established. The NREL 5 MW downwind wind turbine blade is optimized based on the Non-dominated Sorting Genetic Algorithm to achieve the maximum annual energy production (AEP) and the minimum blade root flapping bending moment (BRFBM). A Pareto optimal solution set is obtained, and three representative optimal solutions are selected for analysis. The analyses show that the BRFBM of the downwind blade will be greatly reduced because the centrifugal moment can offset part of the flapping bending moment. For A-blade, the BRFBM and the blade flapping stiffness are reduced by 7.951% and 27.071% respectively at the cost of 0.963% AEP loss, thereby can achieve the lightweight optimization design of an extreme-scale downwind flexible blade. Furthermore, the influence mechanisms of chord length, twist angle and flapping stiffness on the optimization goal are analyzed, and it is found that the flapping stiffness parameter has the greatest influence on the two optimization goals.

关键词

风力机叶片 / 优化设计 / 遗传算法 / 参数化建模 / 下风向

Key words

wind turbine blades / optimization / genetic algorithms / parametric model / downwind

引用本文

导出引用
许波峰, 李振, 朱紫璇, 蔡新, 王同光, 赵振宙. 大型下风向柔性叶片参数化建模及两目标优化设计[J]. 太阳能学报. 2023, 44(3): 147-154 https://doi.org/10.19912/j.0254-0096.tynxb.2021-1247
Xu Bofeng, Li Zhen, Zhu Zixuan, Cai Xin, Wang Tongguang, Zhao Zhenzhou. PARAMETRIC MODELING AND TWO-OBJECTIVE OPTIMAL DESIGN OFLARGE-SCALE DOWNWIND FLEXIBLE BLADES[J]. Acta Energiae Solaris Sinica. 2023, 44(3): 147-154 https://doi.org/10.19912/j.0254-0096.tynxb.2021-1247
中图分类号: TK83   

参考文献

[1] ICHTER B,STEELE A,LOTH E, et al.A morphing downwind-aligned rotor concept based on a 13 MW wind turbine[J]. Wind energy, 2016, 19(4): 625-637.
[2] LOTH E, STEELE A, QIN C, et al.Downwind pre-aligned rotors for extreme-scale wind turbines[J]. Wind energy, 2017, 20(7): 1241-1259.
[3] 杨阳, 曾攀, 雷丽萍. 大型水平轴风力机新型叶片结构设计思想和研究进展[J]. 工程力学, 2019, 36(10): 1-7.
YANG Y, ZENG P, LEI L P.Concept and development of novel blade structure of large horizontal-axis wind turbine[J]. Engineering mechanics, 2019, 36(10): 1-7.
[4] DOSE B, RAHIMI H, STOEVESANDT B, et al.Fluid-structure coupled investigations of the NREL 5 MW wind turbine for two downwind configurations[J]. Renewable energy, 2020, 146: 1113-1123.
[5] RASMUSSEN F,PETERSEN J T,VØLUND P, et al. Soft rotor design for flexible turbines: final report[R]. Roskilde: Risø National Laboratory, 1998.
[6] NOYES C, QIN C, LOTH E.Pre-aligned downwind rotor for a 13.2 MW wind turbine[J]. Renewable energy, 2018, 116: 749-754.
[7] MENG H R, MA Z, DOU B Z, et al.Investigation on the performance of a novel forward-folding rotor used in a downwind horizontal-axis turbine[J]. Energy, 2020, 190: 116384.
[8] QIN C, LOTH E, ZALKIND D S, et al.Downwind coning concept rotor for a 25 MW offshore wind turbine[J]. Renewable energy, 2020, 156: 314-327.
[9] NOYES C, LOTH E, MARTIN D, et al.Extreme-scale load-aligning rotor: to hinge or not to hinge?[J]. Applied energy, 2020, 257: 113985.
[10] JONKMAN J,BUTTERFIELD S,MUSIAL W, et al.Definition of a 5 MW reference wind turbine for offshore system development[R]. Report No. NREL/TP-500-38060, National Renewable Energy Laboratory, Golden, CO, 2009.
[11] ZHU F-W, DING L, HUANG B, et al.Blade design and optimization of a horizontal axis tidal turbine[J]. Ocean engineering, 2020, 195: 106652.
[12] VIANNA NETO J X, GUERRA JUNIOR E J, MORENO S R, et al. Wind turbine blade geometry design based on multi-objective optimization using metaheuristics[J]. Energy, 2018, 162: 645-658.
[13] 姜海波, 曹树良, 李艳茹. 水平轴风力机叶片扭角和弦长的理想分布[J]. 太阳能学报, 2013, 34(1): 1-6.
JIANG H B, CAO S L, LI Y R.Optimal twist and chord of the blades of horizontal axis wind turbine[J]. Acta energiae solaris sinica, 2013, 34(1): 1-6.
[14] 胡超, 周丙浩, 马勇, 等. 基于FAST和Simulink的海上风力机叶片扭角和弦长优化设计研究[J]. 太阳能学报, 2021, 42(3): 135-141.
HU C, ZHOU B H, MA Y, et al.Optimization research of twist angle and chord length of offshore wind turbine blade based on FAST and Simulink[J].Acta energiae solaris sinica, 2021, 42(3): 135-141.
[15] 廖明夫, 李岩, 王巧艳, 等. 大尺寸风力机叶片流固耦合特性研究[J]. 机械科学与技术, 2018, 37(4): 493-500.
LIAO M F, LI Y, WANG Q Y, et al.Study on fluid-structure interaction characteristic for large scaled wind turbine blade[J]. Mechanical science and technology for aerospace engineering, 2018, 37(4): 493-500.
[16] 杨阳, 李春, 缪维跑, 等. 基于多目标遗传算法的风力机叶片全局优化设计[J]. 机械工程学报, 2015, 51(14): 192-198.
YANG Y, LI C, MIAO W P, et al.Global optimal design of wind turbines blade based on multi-object genetic algorithm[J]. Journal of mechanical engineering, 2015, 51(14): 192-198.
[17] WANG L, WANG T G, WU J H, et al.Multi-objective differential evolution optimization based on uniform decomposition for wind turbine blade design[J]. Energy, 2017, 120: 346-361.
[18] 贺德馨, 风工程与工业空气动力学[M]. 北京: 国防工业出版社, 2006.
HE D X.Wind engineering and industrial aerodynamics[M]. Beijing: Publishing House of Defense Industry, 2006.
[19] SNEL H, HOUWINK R, BOSSCHERS J.Sectional prediction of lift coefficients on rotating wind turbine blades in stall[R]. ECN-C-93-052, Netherlands, 1994.
[20] SESSAREGO M, FENG J, RAMOS-GARCíA N, et al. Design optimization of a curved wind turbine blade using neural networks and an aero-elastic vortex method under turbulent inflow[J]. Renewable energy, 2020, 146: 1524-1535.
[21] 陈进格, 沈昕, 王广, 等. 基于升力面和大变形梁的风力机叶片气弹模型[J]. 工程热物理学报, 2018, 39(7): 1469-1475.
CHEN J G, SHEN X, WANG G, et al.Aeroelastic modeling for wind turbine blade based on lifting surface model and nonlinear beam theory[J]. Journal of engineering thermophysics, 2018, 39(7): 1469-1475.
[22] 李义金, 王同光. 截面参考系对采用梁模型风力机叶片的动态性能影响分析[J]. 太阳能学报, 2017, 38(1):16-22.
LI Y J, WANG T G.Dynamic analysis of wind turbine blade based on different references[J]. Acta energiae solaris sinica, 2017, 38(1): 16-22.
[23] 张立, 缪维跑, 闫阳天, 等. 考虑自重影响的大型风力机复合材料叶片结构力学特性分析[J]. 中国电机工程学报, 2020, 40(19): 6272-6284.
ZHANG L, MIAO W P, YAN Y T,et al.Analysis of mechanical properties of large wind turbine composite blade considering weight of blade[J]. Proceedings of the CSEE, 2020, 40(19): 6272-6284.
[24] 许波峰, 王同光, 张震宇, 等. 基于自由涡尾迹和遗传算法的叶尖小翼气动优化设计[J]. 空气动力学学报, 2013, 31(1): 132-136.
XU B F, WANG T G, ZHANG Z Y, et al.Aerodynamic optimal design of winglet based on free vortex wake method and genetic algorithm[J]. Acta aerodynamica sinica, 2013, 31(1): 132-136.

基金

中央高校基本科研业务费专项资金(B210202063); 江苏风力发电工程技术中心开放基金(ZK19-03-01)

PDF(1822 KB)

Accesses

Citation

Detail

段落导航
相关文章

/