基于改进灰狼优化算法的光伏阵列多峰MPPT研究

毛明轩, 许钊, 崔立闯, 朱立尧, 郭珂, 周林

太阳能学报 ›› 2023, Vol. 44 ›› Issue (3) : 450-456.

PDF(2204 KB)
欢迎访问《太阳能学报》官方网站,今天是
PDF(2204 KB)
太阳能学报 ›› 2023, Vol. 44 ›› Issue (3) : 450-456. DOI: 10.19912/j.0254-0096.tynxb.2021-1261

基于改进灰狼优化算法的光伏阵列多峰MPPT研究

  • 毛明轩1,2, 许钊1, 崔立闯3, 朱立尧1, 郭珂1, 周林1
作者信息 +

RESEARCH ON MULTI-PEAK MPPT OF PHOTOVOLTAIC ARRAY BASED ON MODIFIED GRAY WOLF OPTIMIZATION ALGORITHM

  • Mao Mingxuan1,2, Xu Zhao1, Cui Lichuang3, Zhu Liyao1, Guo Ke1, Zhou Lin1
Author information +
文章历史 +

摘要

针对局部阴影条件下光伏阵列呈现出的非线性多峰值P-V输出特性,提出一种基于改进灰狼优化算法的最大功率点跟踪(MPPT)控制方法。该算法将传统灰狼优化算法中线性减小的收敛因子改进为按非线性规律变化,以改善算法的动态性能。结果表明:所提出的MPPT方法在局部阴影条件下能有效跟踪到光伏阵列的最大功率点,不仅具有较快的跟踪速度,且跟踪精度达到99.1%。

Abstract

According to the nonlinear multi-peak P-V output characteristics of PV arrays under partial shading conditions, a maximum power point tracking (MPPT) control algorithm based on modified gray wolf optimization algorithm is proposed. The proposed algorithm replaces the linear convergence factor in the traditional gray wolf optimization algorithm with a nonlinear convergence factor, which improves its dynamic performance. Experimental results show that the proposed MPPT algorithm can effectively track the maximum power point of the photovoltaic array under partial shading conditions. It not only has a faster tracking speed, but also has a tracking accuracy of 99.1%.

关键词

最大功率点跟踪 / 太阳电池 / 非线性控制系统 / 光伏阵列 / 改进灰狼优化算法

Key words

maximum power point trackers / solar cells / nonlinear control systems / PV arrays / modified gray wolf optimization (MGWO)

引用本文

导出引用
毛明轩, 许钊, 崔立闯, 朱立尧, 郭珂, 周林. 基于改进灰狼优化算法的光伏阵列多峰MPPT研究[J]. 太阳能学报. 2023, 44(3): 450-456 https://doi.org/10.19912/j.0254-0096.tynxb.2021-1261
Mao Mingxuan, Xu Zhao, Cui Lichuang, Zhu Liyao, Guo Ke, Zhou Lin. RESEARCH ON MULTI-PEAK MPPT OF PHOTOVOLTAIC ARRAY BASED ON MODIFIED GRAY WOLF OPTIMIZATION ALGORITHM[J]. Acta Energiae Solaris Sinica. 2023, 44(3): 450-456 https://doi.org/10.19912/j.0254-0096.tynxb.2021-1261
中图分类号: TK513.5   

参考文献

[1] 范瑞祥, 尹国明, 苗洁蓉, 等. 基于参数辨识的光伏组件快速MPPT方法[J]. 太阳能学报, 2020, 41(2): 296-302.
FAN R X, YIN G M, MIAO J R, et al.A quick MPPT method of PV panel based on parameter identification[J]. Acta energiae solaris sinica, 2020, 41(2): 296-302.
[2] MOTAHHIR S, HAMMOUMI A E, GHZIZAL A E.The most used MPPT algorithms: review and the suitable low-cost embedded board for each algorithm[J]. Journal of cleaner production, 2020, 246: 118983.
[3] BOLLIPO R B, MIKKILI S, BONTHAGORLA P K.Hybrid, optimal, intelligent and classical PV MPPT techniques: a review[J]. CSEE journal of power and energy systems, 2021, 7(1): 9-33.
[4] GE X, AHMED F W, REZVANI A, et al.Implementation of a novel hybrid BAT-Fuzzy controller based MPPT for grid-connected PV-battery system[J]. Control engineering practice, 2020, 98: 104380.
[5] ALI Z M, QUYNH N V, DADFAR S, et al.Variable step size perturb and observe MPPT controller by applying θ-modified krill herd algorithm-sliding mode controller under partially shaded conditions[J]. Journal of cleaner production, 2020, 271: 122243.
[6] KAVYA M, JAYALALITHA S.Developments in perturb and observe algorithm for maximum power point tracking in photovoltaic panel: a review[J]. Archives of computational methods in engineering, 2021, 28: 2447-2457.
[7] 梅润杰, 张经炜. 基于Z源逆变器的粒子群和模糊变步长电导增量MPPT算法[J]. 太阳能学报, 2020, 41(1): 137-145.
MEI R J, ZHANG J W.MPPT algorithm of particle swarm optimization and fuzzy variable step incremental conductance method based on Z-source inverter[J]. Acta energiae solaris sinica, 2020, 41(1): 137-145.
[8] SINGH P, SHUKLA N, GAUR P.Modified variable step incremental-conductance MPPT technique for photovoltaic system[J]. International journal of information technology, 2021, 13(6): 2483-2490.
[9] 武迪, 许春雨, 郑丽君, 等. 基于β参数的光伏系统最大功率点跟踪算法研究[J]. 太阳能学报, 2020, 41(6): 234-241.
WU D, XU C Y, ZHENG L J, et al.Maximum power point tracking algorithm of photovoltaic system based on β-parameter[J]. Acta energiae solaris sinica, 2020, 41(6): 234-241.
[10] 樊立萍, 童兵. 基于BOOST变换器的MFC最大功率跟踪控制[J]. 太阳能学报, 2021, 42(2): 274-280.
FAN L P, TONG B.Maximum power tracking control of microbial fuel cell based on Boost convertor[J]. Acta energiae solaris sinica, 2021, 42(2): 274-280.
[11] 彭志辉, 彭玉春, 周宏明, 等. 光照快速变化下MPPT算法扰动步长的优化设计[J]. 太阳能学报, 2020, 41(8): 137-143.
PENG Z H, PENG Y C, ZHOU H M, et al.Optimal design of MPPT algorithm perturbation step length under ripid change solar radiation[J]. Acta energiae solaris sinica, 2020, 41(8): 137-143.
[12] KHAN F U, GULZAR M M, SIBTAIN D, et al.Variable step size fractional incremental conductance for MPPT under changing atmospheric conditions[J]. International journal of numerical modelling electronic networks devices and fields, 2020, 33(6): e2765.
[13] 卫东, 王央康, 常亚文. 一种基于增量电导法的变步长MPPT算法[J]. 太阳能学报, 2018, 39(5): 1277-1283.
WEI D, WANG Y K, CHANG Y W.A variable step-size MPPT algorithm based on incremental conductance method[J]. Acta energiac sdaris sinica, 2018, 39(5): 1277-1283.
[14] WINSTON D P, KUMARAVEL S, KUMAR B P, et al.Performance improvement of solar PV array topologies during various partial shading conditions[J]. Solar energy, 2020, 196(3): 228-242.
[15] YOUSRI D, ALLAM D, ETEIBA M B.Optimal photovoltaic array reconfiguration for alleviating the partial shading influence based on a modified harris hawks optimizer[J]. IEEE transactions on electron devices, 2020, 206: 112470.
[16] IMTIAZ T, KHAN B H, KHANAM N.Fast and improved PSO(FIPSO)-based deterministic and adaptive MPPT technique under partial shading conditions[J]. IET renewable power generation, 2020, 14(16): 3164-3171.
[17] MIRZA A F, MANSOOR M, LING Q, et al.A salp-swarm optimization based MPPT technique for harvesting maximum energy from PV systems under partial shading conditions[J]. Energy conversion and management, 2020, 209: 112625.
[18] MAO M X, ZHANG L, YANG L, et al.MPPT using modified salp swarm algorithm for multiple bidirectional PV-Cuk converter system under partial shading and module mismatching[J]. Solar energy, 2020, 209: 334-349.
[19] JAMALUDIN M N I, TAJUDDIN M F N, AHMED J, et al. An effective salp swarm based MPPT for photovoltaic systems under dynamic and partial shading conditions[J]. IEEE acess, 2021, 9: 34570-34589.
[20] GUO K, CUI L C, MAO M X, et al.An improved gray wolf optimizer MPPT algorithm for PV system with BFBIC converter under partial shading[J]. IEEE access, 2020, 8: 103476-103490.
[21] PILAKKAT D, KANTHALAKSHMI S.Single phase PV system operating under partially shaded conditions with ABC-PO as MPPT algorithm for grid connected applications[J]. Energy reports, 2020, 6: 1910-1921.
[22] 石季英, 凌乐陶, 薛飞, 等. 领地粒子群算法在光伏最大功率跟踪的应用[J]. 太阳能学报, 2019, 40(9): 2554-2560.
SHI J Y, LING L T, XUE F, et al.Application of territorial PSO in global MPPT for PV array[J]. Acta energiae solaris sinica, 2019, 40(9): 2554-2560.
[23] YANG B, ZHONG L E, ZHANG X S, et al.Novel bio-inspired memetic salp swarm algorithm and application to MPPT for PV systems considering partial shading condition[J]. Journal of cleaner production, 2019, 215: 1203-1222.
[24] IBRAHIM I A, HOSSAIN M J, DUCK B C.An optimized offline random forests-based model for ultra-short-term prediction of PV characteristics[J]. IEEE transactions on industrial informatics, 2020, 16(1): 202-214.

基金

国家自然科学基金(52107177); 国家博士后国际交流计划(2020045)

PDF(2204 KB)

Accesses

Citation

Detail

段落导航
相关文章

/