采用程序升温限氧法,在不同温度下制备小麦秸秆生物炭,探究其表面形态、官能团和理化特性随碳化温度升高的演变规律。在此基础上设计基于生物炭的电极,并对其电化学性能进行测试。结果表明:生物炭内部保留了秸秆纤维素多层的束状结构,呈层状、狭缝型非均匀的孔道。随着碳化温度的升高,其表面形态经历蜂窝状小孔、多层维束结构坍塌、边缘熔融和表面析出结晶盐4个阶段。秸秆生物炭具有优越的电容性能,以WB600 ℃的电化学性能最为突出。当碳化温度≥600 ℃时,在波数1430~1870 cm-1之间,还出现众多杂乱的弱峰。这是由于随着碳化温度的升高,生物炭中—CH==基团转化为C==O基团,生成具有环状结构的得电子基团——醌类。
Abstract
The programmed heating and oxygen limiting method technique is used to prepare wheat straw biochar at different temperatures. The effect of carbonization temperature on surface morphology, functional groups and physicochemical properties with the increase of carbonization temperature are investigated. Then, electrode is designed based on biochar and its electrochemical performance is evaluated. The results show that the biochar retains the multilayer bundle structure of straw cellulose, which is layered and non-uniform slit pore. Straw biochar has excellent capacitance properties, and the electrochemical performance of WB600 ℃ biochar is the most prominent. It has been observed from FTIR results that when the carbonization temperature is ≥600 ℃,there are several weak scattered between 1430-1870 cm-1. This is due to the thermal fusion of the crystal structure of lignin with the increase of carbonization temperature. The — CH== group in biochar is transformed into C==O group, resulting in ketones with ring structure is formed.
关键词
秸秆 /
生物炭 /
理化特性 /
热解温度 /
电化学
Key words
straw /
biochar /
physicochemical properties /
pyrolysis temperature /
electrochemistry
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] 徐胜勇, 彭程里, 陈可, 等. 基于扇环形区域图像分割的小麦秸秆截面参数测量方法[J]. 农业机械学报, 2018, 49(4): 53-59.
XU S Y, PENG C L, CHEN K, et al.Measurement method of wheat stalks cross section parameters based on sector ring region image segmentation[J]. Transactions of the Chinese Society for Agricultural Machinery, 2018, 49(4): 53-59.
[2] LIN S, WANG F J, SHAO Z Q.Biomass applied in supercapacitor energy storage devices[J]. Journal of materials science, 2021, 56(3): 1-37.
[3] GONG X T, ZHAO Y Q, YANG P Y, et al.Hierarchically porous and heteroatom doped carbon derived from tobacco rods for supercapacitors[J]. Journal of power sources, 2016, 307(Mar 1): 391-400.
[4] FENG J, CHEN X M, WEN X, et al.Biochar effects on soil chemical properties and mobilization of cadmium (Cd) and lead (Pb) in paddy soil[J]. Soil use and management, 2020, 36(2): 320-327.
[5] DING Z H, HU X, WAN Y S, et al.Removal of lead, copper, cadmium, zinc, and nickel from aqueous solutions by alkali-modified biochar: batch and column tests[J]. Journal of industrial and engineering chemistry, 2016, 33: 239-245.
[6] LIU H K, XU F, XIE Y L, et al.Effect of modified coconut shell biochar on availability of heavy metals and biochemical characteristics of soil in multiple heavy metals contaminated soil[J]. Science of the total environment, 2018, 645: 702-709.
[7] SONG H O, WU Y F, ZHANG S P, et al.Mesoporous generation-inspired ultrahigh capacitive deionization performance by sono-assembled activated carbon/inter-connected graphene network architecture[J]. Electrochimica acta, 2016, 205: 161-169.
[8] JIA B P, ZHANG W.Preparation and application of electrodes in capacitive deionization (CDI): a state-of-art review[J]. Nanoscale research letters, 2016, 11(1): 64.
[9] LEE J, KIM S, YOON J, Rocking chair desalination battery based on prussian blue electrodes[J]. ACS omega, 2017, 2(4): 1653-1659.
[10] LIN Y C, CHO J, TOMPSETT G A, et al.Kinetics and mechanism of cellulose pyrolysis[J]. The journal of physical chemistry C, 2009, 113(46): 20097-20107.
[11] HUANG C H, DOONG R A.Sugarcane bagasse as the scaffold for mass production of hierarchically porous carbon monoliths by surface self-assembly[J]. Microporous and mesoporous materials: the offical journal of the international zeolite association, 2012, 147(1): 47-52.
[12] 姚锡文, 许开立. 生物质气化站玉米芯飞灰的特性及其综合利用[J]. 农业工程学报, 2015, 31(20): 218-224.
YAO X W, XU K L.Ash properties and integrated uses of corncob fly ash from biomass gasification station[J]. Transactions of the Chinese Society of Agricultural Engineering, 2015, 31(20): 218-224.
[13] KEILUWEIT M, NICO P S, JOHNSON M G, et al.Dynamic molecular structure of plant biomass-derived black carbon (biochar)[J]. Environmental science & technology, 2010, 44(4): 1247-1253.
[14] 李诗杰, 张继刚, 李金晓, 等, 超级电容器用马尾藻基超级活性炭的制备及其电化学性能[J]. 材料工程, 2018, 46(7): 157-164.
LI S J, ZHANG J G, LI J X, et al.Preparation and electrochemical property of gulfweed-based super activated carbon for supercapacitor[J]. Journal of materials engineering, 2018, 46(7): 157-164.
[15] ZHANG G X, CHEN Y M, CHEN Y G, et al.Activated biomass carbon made from bamboo as electrode material for supercapacitors-sciencedirect[J]. Materials research bulletin, 2018, 102: 391-398.
基金
秸秆高效清洁捆烧技术与装备研究(201503015); 河南省牧业经济学院2019年博士科研启动基金(2019HNUAHEDF16); 河南省科技项目(212102110228)