基于清洁发展机制的不确定性机组组合优化方法

李英量, 高兆迪, 王康, 周丽雯, 武晓朦

太阳能学报 ›› 2023, Vol. 44 ›› Issue (3) : 368-375.

PDF(1726 KB)
欢迎访问《太阳能学报》官方网站,今天是
PDF(1726 KB)
太阳能学报 ›› 2023, Vol. 44 ›› Issue (3) : 368-375. DOI: 10.19912/j.0254-0096.tynxb.2021-1275

基于清洁发展机制的不确定性机组组合优化方法

  • 李英量, 高兆迪, 王康, 周丽雯, 武晓朦
作者信息 +

UNCERTAINTY UNIT COMMITMENT OPTIMIZATION METHOD BASED ON CLEAN DEVELOPMENT MECHANISM

  • Li Yingliang, Gao Zhaodi, Wang Kang, Zhou Liwen, Wu Xiaomeng
Author information +
文章历史 +

摘要

为了优化机组运行过程中存在的碳排放量高、经济性低等问题,该文提出一种考虑清洁发展机制(CDM)的不确定性机组组合模型,该模型较传统机组组合策略在兼顾低碳性方面考虑得更为全面。同时考虑了大规模风电场与电动汽车两个低碳要素,强化低碳要素与火电机组的联系,促进能源结构的合理化;通过制定碳排放交易机制、CO2排放成本、碳排放配额等相关约束,减少机组的运行成本,为系统的清洁低碳与经济最优运行提供合理的机组组合方案。以10机组系统为算例进行仿真分析,结果表明,在不确定性的机组组合优化问题中采用所提模型能够显著减少碳排放量,有利于机组的低碳经济化运行。

Abstract

In order to optimize the problems of high carbon emissions and low economy in the process of unit operation, this paper proposes an uncertain unit commitment model that considers the Clean Development Mechanism (CDM), which is better than traditional unit commitment strategies. Taking into account low-carbon aspects is more comprehensive. The paper also considers the two low-carbon elements of large-scale wind farms and electric vehicles, strengthens the connection between low-carbon elements and thermal power units, and promotes the rationalization of energy structure. The formulation of carbon emission trading mechanisms, CO2 emission costs, carbon emission quotas, etc. constraints reduces the operating cost of the unit, and provides a reasonable unit combination plan for the clean, low-carbon and economically optimal operation of the system. In this paper, a 10-unit system is taken as an example for simulation analysis. The results show that the proposed model can significantly reduce carbon emissions in the uncertain unit portfolio optimization problem, which is conducive to the low-carbon and economic operation of the unit.

关键词

清洁发展机制 / 低碳经济 / 机组组合 / 电动汽车 / 风力发电

Key words

clean development mechanism / low-carbon economy / unit commitment / electric vehicles / wind power

引用本文

导出引用
李英量, 高兆迪, 王康, 周丽雯, 武晓朦. 基于清洁发展机制的不确定性机组组合优化方法[J]. 太阳能学报. 2023, 44(3): 368-375 https://doi.org/10.19912/j.0254-0096.tynxb.2021-1275
Li Yingliang, Gao Zhaodi, Wang Kang, Zhou Liwen, Wu Xiaomeng. UNCERTAINTY UNIT COMMITMENT OPTIMIZATION METHOD BASED ON CLEAN DEVELOPMENT MECHANISM[J]. Acta Energiae Solaris Sinica. 2023, 44(3): 368-375 https://doi.org/10.19912/j.0254-0096.tynxb.2021-1275
中图分类号: TM732   

参考文献

[1] 李晖, 刘栋, 姚丹阳. 面向碳达峰碳中和目标的我国电力系统发展研判[J]. 中国电机工程学报, 2021, 41(18): 6245-6259.
LI H, LIU D, YAO D Y.Analysis and reflection on the development of power system towards the goal of carbon emission peak and carbon neutrality[J]. Proceedings of the CSEE, 2021, 41(18): 6245-6259.
[2] 王灿, 张雅欣. 碳中和愿景的实现路径与政策体系[J]. 中国环境管理, 2020, 12(6): 58-64.
WANG C, ZHANG Y X.Implementation pathway and policy system of carbon neutrality vision[J]. Chinese journal of environmental management, 2020, 12(6): 58-64.
[3] PANDZIC H, DVORKIN Y, WANG Y S, et al.Toward cost-efficient and reliable unit commitment under uncertainty[J]. IEEE transactions on power systems, 2016, 31(2): 970-982.
[4] 刘建平, 王旭斌, 吴岩, 等. 含风电和储能的电力系统安全约束机组组合问题研究[J]. 现代电力, 2015, 32(5): 48-55.
LIU J P, WANG X B, WU Y, et al.Research on security-constrained unit commitment of power systems with wind farm and energy storage[J]. Modern electric power, 2015, 32(5): 48-55.
[5] 王砚平, 鲍威, 李赢, 等. 考虑N-1故障的安全约束机组组合模型及约束削减方法[J]. 电力自动化设备, 2021, 41(7): 167-175.
WANG Y P, BAO W, LI Y, et al.Model and constraint-reduction method for security-constrained unit commitment considering N-1 contingency[J]. Electric power automation equipment, 2021, 41(7): 167-175.
[6] ZHOU B R, GENG G C, JIANG Q Y.Hierarchical unit commitment with uncertain wind power generation[J]. IEEE transactions on power systems, 2016, 31(1): 94-104.
[7] 朱永利, 刘刚, 黄政, 等. 基于二进制微分进化算法和目标函数分解的大规模机组组合求解[J]. 电力自动化设备, 2019, 39(10): 150-156, 173.
ZHU Y L, LIU G, HUANG Z, et al.Large-scale unit commitment solution based on binary differential evolution algorithm and objective function decomposition[J]. Electric power automation equipment, 2019, 39(10): 150-156, 173.
[8] 卢志刚, 郭凯, 闫桂红, 等. 考虑需求响应虚拟机组和碳交易的含风电电力系统优化调度[J]. 电力系统自动化, 2017, 41(15): 58-65.
LU Z G, GUO K, YAN G H, et al.Optimal dispatch of power system integrated with wind power considering virtual generator units of demand response and carbon trading[J]. Automation of electric power systems, 2017, 41(15): 58-65.
[9] 李滨, 粟归玉, 王亚龙. 低碳电力下多目标机组组合优化调度[J]. 电力系统及其自动化学报, 2015, 27(11): 1-8.
LI B, SU G Y, WANG Y L.Multi-objective unit commitment optimization dispatch in the low-carbon electricity[J]. Proceedings of the CSU-EPSA, 2015, 27(11): 1-8.
[10] WEN X, ABBES D, FRANCOIS B.Stochastic optimization for security-constrained day-ahead operational planning under PV production uncertainties: reduction analysis of operating economic costs and carbon emissions[J]. IEEE access, 2021, 9: 97039-97052.
[11] 陈林, 万攀兵. 《京都议定书》及其清洁发展机制的减排效应——基于中国参与全球环境治理微观项目数据的分析[J]. 经济研究, 2019, 54(3): 55-71.
CHEN L, WAN P B.The Kyoto Protocol and its clean development mechanism’s emission reduction effects: micro-project data on China’s participation in global environmental governance[J]. Economic research journal, 2019, 54(3): 55-71.
[12] HONG I H, RODRIGUEZ G A N. Issues affecting the Clean Development Mechanism(CDM): a review[C]//IEEE International Conference on Computer Supported Cooperative Work in Design, IEEE, Hsinchu, China, 2014.
[13] CHANGE U N F C O C. Kyoto Protocol to the United Nations framework convention on climate change[J]. Review of European comparative & international environmental law, 2010, 7(2): 214-217.
[14] 沈可挺, 徐嵩龄, 贺菊煌. 中国实施CDM项目的CO2减排资源: 一种经济—技术—能源—环境条件下CGE模型的评估[J]. 中国软科学, 2002(7): 109-114.
SHEN K T, XU S L, HE J H.China’s CO2 emission reduction resulting from CDM implementation: a CGE-based evaluation under certain economy-technique-energy-environment condition[J]. China soft science, 2002(7): 109-114.
[15] LU S Y, LOU S H, WU Y W, et al.Power system economic dispatch under low-carbon economy with carbon capture plants considered[J]. IET generation, transmission & distribution, 2013, 7(9): 991-1001.
[16] LOU S H, LU S Y, WU Y W, et al.Optimizing spinning reserve requirement of power system with carbon capture plants[J]. IEEE transactions on power systems, 2015, 30(2): 1056-1063.
[17] 胡文平, 何立夫, 陈杰军, 等. 考虑大规模电动汽车接入电网的双层优化调度策略[J]. 电力系统保护与控制, 2016, 44(21): 22-28.
HU W P, HE L F, CHEN J J, et al.A bi-layer optimaization based schedule considering large-scale electric vehicles[J]. Power system protection and control, 2016, 44(21): 22-28.
[18] SABER A Y, VENAYAGAMOORTHY G K.Unit commitment with vehicle-to-grid using particle swarm optimization[C]//IEEE Bucharest Power Tech Conference, IEEE, Bucharest, Romania, 2009.
[19] 张晓花, 谢俊, 朱正伟, 等. 考虑不确定性的智能电网多目标机组组合研究[J]. 太阳能学报, 2016, 37(12): 3055-3062.
ZHANG X H, XIE J, ZHU Z W, et al.Research of multi-object unit combination in smart grid with uncertainty[J]. Acta energiae solaris sinica, 2016, 37(12): 3055-3062.
[20] HOSSEINI S H, KHODAEI A, AMINIFAR F.A novel straightforward unit commitment method for large-scale power systems[J]. IEEE transactions on power systems, 2007, 22(4): 2134-2143.
[21] 雷宇. 基于场景分析的含风电场电力系统机组组合问题的研究[D]. 济南: 山东大学, 2013.
LEI Y.Research on unit commitment of power system containing wind farm based on scenario analysis[D]. Ji’nan: Shandong University, 2013.
[22] 庞文涛, 盛德仁, 陈坚红, 等. 含风电系统的多机组协调运行滚动策略[J]. 太阳能学报, 2020, 41(11): 234-240.
PANG W T, SHENG D R, CHEN J H, et al.Rolling strategy of multiunit coordinated operation with wind power system[J]. Acta energiae solaris sinica, 2020, 41(11): 234-240.

基金

陕西省自然科学基础研究计划(2020JM-542); 陕西省科技计划基础研究项目(2021JM-404); 陕西省教育厅科研计划(21JK0843); 国家自然科学基金企业创新发展联合基金重点项目(U20B2029)

PDF(1726 KB)

Accesses

Citation

Detail

段落导航
相关文章

/