考虑桩基础柔性的固定式海上风力机调谐质量阻尼器参数优化研究

韩东东, 王文华, 李昕

太阳能学报 ›› 2023, Vol. 44 ›› Issue (3) : 169-177.

PDF(2602 KB)
欢迎访问《太阳能学报》官方网站,今天是
PDF(2602 KB)
太阳能学报 ›› 2023, Vol. 44 ›› Issue (3) : 169-177. DOI: 10.19912/j.0254-0096.tynxb.2021-1277

考虑桩基础柔性的固定式海上风力机调谐质量阻尼器参数优化研究

  • 韩东东, 王文华, 李昕
作者信息 +

OPTIMIZATION DESIGN OF TUNED MASS DAMPER FOR FIXED BOTTOM OFFSHORE WIND TURBINE WITH PILE FOUNDATION FLEXIBILITIES

  • Han Dongdong, Wang Wenhua, Li Xin
Author information +
文章历史 +

摘要

将被动调谐质量阻尼器(TMD)应用于单桩基础海上风力机,以降低风、浪联合作用下风力机塔筒结构动力响应。利用等效桩长法模拟桩基础柔性,将该方法引入气动-水动-伺服-弹性-振动控制风力机仿真程序FAST-SC,建立能考虑桩基础柔性影响的固定式风力机-TMD耦合数值仿真模型。同时,选取固定式海上风力机支撑结构一阶弯曲模态为主模态,并将TMD简化为单自由度体系,基于拉格朗日方程建立简化的单桩海上风力机-TMD耦合模型。基于该简化模型,采用响应面法分别对刚性桩基础和柔性桩基础条件下的海上风力机的TMD参数进行优化。将优化的TMD参数代入所建立的能考虑桩基础柔性影响的海上风力机-TMD耦合数值模型中,对比不同风、浪作用下TMD对采用不同桩基础边界条件的海上风力机减振效果的差异。通过对比得出:不同桩基础边界使得单桩基础海上风力机结构频率不同,所得的最优TMD设计参数也不相同,优化设计后的TMD对风、浪联合作用下柔性桩基础海上风力机的减振效果明显优于刚性桩基础。

Abstract

In the study, the tuned mass damper (TMD) is applied to a monopile offshore wind turbine to reduce the structural dynamic responses under winds and waves. The apparently fixed (AF) model is used to simulate the flexibilities of pile foundation. Then, the boundary conditions of the offshore wind turbine (OWT) and TMD coupled analysis model in FAST-SC are updated, according to the theories of AF model. Meanwhile, in order to perform the optimization design of TMD, the simplified coupled model of OWT and TMD is established based on Lagrange equation. The fist bending mode of the support system of OWT is reserved in the simplified model, and the TMD is simplified as a single degree of freedom system. Sequentially, the optimized TMD parameters are derived using the response surface method. The vibration control effects of TMD are studied based on the coupled responses of OWT under wind and wave loads, and the influence of pile foundation flexibilities on the mitigation effects are proved. It can be seen that the different optimized TMDs are derived owing to the differences of OWT dynamic characteristics caused by pile foundation flexibilities. Further, the more effective reductions of OWT with pile foundation flexibilities using the optimized TMDs are observed.

关键词

海上风力机 / 动力响应 / 振动控制 / 响应面法 / 整体耦合模型

Key words

offshore wind turbines / dynamic response / vibration control / response surface method / fully coupled analysis model

引用本文

导出引用
韩东东, 王文华, 李昕. 考虑桩基础柔性的固定式海上风力机调谐质量阻尼器参数优化研究[J]. 太阳能学报. 2023, 44(3): 169-177 https://doi.org/10.19912/j.0254-0096.tynxb.2021-1277
Han Dongdong, Wang Wenhua, Li Xin. OPTIMIZATION DESIGN OF TUNED MASS DAMPER FOR FIXED BOTTOM OFFSHORE WIND TURBINE WITH PILE FOUNDATION FLEXIBILITIES[J]. Acta Energiae Solaris Sinica. 2023, 44(3): 169-177 https://doi.org/10.19912/j.0254-0096.tynxb.2021-1277
中图分类号: TK8   

参考文献

[1] LACKNER M A, ROTEA M A.Passive structural control of offshore wind turbines[J]. Wind energy, 2011, 14(3):373-388.
[2] LACKNER M A, ROTEA M A.Structural control of floating wind turbines[J]. Mechatronics, 2011, 21(4): 704-719.
[3] STEWART G M, LACKNER M A.Offshore wind turbine load reduction employing optimal passive tuned mass damping systems[J]. IEEE transactions on control systems technology, 2013, 21(4): 1090-1104.
[4] STEWART G M, LACKNER M A.The impact of passive tuned mass dampers and wind-wave misalignment on offshore wind turbine loads[J]. Engineering structures, 2014, 73: 54-61.
[5] GHASSEMPOUR M, FAILLA G, ARENA F.Vibration mitigation in offshore wind turbines via tuned mass damper[J]. Engineering structures, 2019, 183:610-636.
[6] WANG W H, LI X, ZHAO H S, et al.Vibration control of a pentapod offshore wind turbine under combined seismic wind and wave loads using multiple tuned mass damper[J]. Applied ocean research, 2020, 103: 102254.
[7] 崔浩, 王文华, 王滨, 等. 地震作用下海上风机TMD控制[J]. 水力发电, 2019, 45(4): 110-115.
CUI H, WANG W H, WANG B, et al.Vibration control of offshore wind turbines under earthquakes by using tuned mass damper[J]. Water power, 2019, 45(4): 110-115.
[8] 许子非, 叶柯华, 李春, 等. 海冰载荷作用下海上风力机TMD减振研究[J]. 热能动力工程, 2018, 33(10):127-134.
XU Z F, YE K H, LI C, et al.Vibration reduction analysis of offshore wind turbine with TMD system[J]. Journal of engineering for thermal energy and power, 2018, 33(10): 127-134.
[9] FITZGERALD B, BASU B.Structural control of wind turbines with soil structure interaction included[J]. Engineering structures, 2016, 111(15): 131-151.
[10] GAUR S, ELIAS S, HBBEL T, et al.Tuned mass dampers in wind response control of wind turbine with soil-structure interaction[J]. Soil dynamics and earthquake engineering, 2020, 132: 106071.
[11] JONKMAN J, MUSIAL W.Subtask 2 the offshore code comparison collaboration (OC3) IEA wind task 23 offshore wind technology and deployment[R]. Technical report, 2010.
[12] PASSON P.Memorandum: derivation and description of the soil-pile-interaction models[R]. Stuttgart: University of Stuttgart, 2006.
[13] BIR G.Blades and towers modal analysis code (BModes): verification of blade modal analysis capability[M]. New York: American Institute of Aeronautics & Astronautics Inc, 2013.
[14] IEC 61400-3 (ed. 1). Wind turbines, 2009. Part 3: Design requirements for offshore wind turbines[S]. International Electrotechnical Commission, Geneva, Switzerland.
[15] FOLEY J T, GUTOWSKI T G.TurbSim: reliability-based wind turbine simulator[C]//IEEE International Symposium on Electronics and the Environment, San Francisco, CA, USA, 2008: 1-5, doi:10.1109/ISEE.2008.4862872.ISEE.
[16] KAIMAL J C, WYNGAARD J C, IZUMI Y, et al.Spectral characteristics of surface-layer turbulence[J]. Quarterly journal of the royal Meteorological Society, 1972, 98: 123560157.
[17] HARTOG D.Mechanical vibrations[M]. New York: Dover Publications, 1985.

基金

国家自然科学基金(52001052; 51939002)

PDF(2602 KB)

Accesses

Citation

Detail

段落导航
相关文章

/