大偏航角下基于IPC的风力机变速率停机控制研究

周玲, 任永

太阳能学报 ›› 2023, Vol. 44 ›› Issue (3) : 178-184.

PDF(2361 KB)
欢迎访问《太阳能学报》官方网站,今天是
PDF(2361 KB)
太阳能学报 ›› 2023, Vol. 44 ›› Issue (3) : 178-184. DOI: 10.19912/j.0254-0096.tynxb.2021-1281

大偏航角下基于IPC的风力机变速率停机控制研究

  • 周玲, 任永
作者信息 +

RESEARCH ON IPC-BASED VARIABLE-SPEED SHUTDOWN CONTROL OF WIND TURBINES UNDER LARGE YAW ANGLES

  • Zhou Ling, Ren Yong
Author information +
文章历史 +

摘要

通过分析机组在触发偏航超限停机过程中,叶片在不同方位角下的受力情况,指出大偏航角下叶片受载不均衡是导致轮毂中心出现极限载荷的根源,并研究桨距角与偏航角方向对不均衡受载的影响,在原始控制策略的基础上,引入基于叶轮方位角的独立变桨控制(IPC)变速率停机策略,减小机组在负向大偏航下的气动不平衡,大大降低了轮毂与偏航轴承中心极限载荷,依据IEC标准,并以某7.0 MW海上风力机为研究对象,通过偏航超限工况载荷计算,对比分析发现,基于叶轮方位角IPC变速率停机策略,可减小不平衡推力引入的倾覆弯矩,达到减小机组载荷的目的,为此特定风况下的降载提供了可靠依据。

Abstract

By analyzing the blade loading conditions at different azimuth angles during the process of triggering yaw over-limit shutdown in wind turbines, it is pointed out that the unbalanced blade loading under large yaw angles is the root cause of the extreme load in the hub center. The effects of pitch angle and yaw angle direction on the unbalanced loading are studied. Based on the original control strategy, an IPC variable-speed shutdown strategy based on the blade azimuth angle is introduced to reduce the aerodynamic imbalance of the turbine under negative large yaw, greatly reducing the extreme loads in the hub and yaw bearing centers in accordance with IEC standards. Taking a 7.0 MW offshore wind turbine as example and conducting load calculations under yaw over-limit operating conditions, comparative analysis shows that the IPC variable-speed shutdown strategy based on blade azimuth angle can reduce the overturning bending moment introduced by unbalanced thrust, achieve the goal of reducing turbine loads, and provide a reliable basis for load reduction under specific wind conditions.

关键词

风电机组 / 叶片 / 载荷优化 / 偏航控制 / 独立变桨控制 / Bladed仿真

Key words

wind turbines / blades load alleviation / yaw control / individual pitch control / Bladed simulation

引用本文

导出引用
周玲, 任永. 大偏航角下基于IPC的风力机变速率停机控制研究[J]. 太阳能学报. 2023, 44(3): 178-184 https://doi.org/10.19912/j.0254-0096.tynxb.2021-1281
Zhou Ling, Ren Yong. RESEARCH ON IPC-BASED VARIABLE-SPEED SHUTDOWN CONTROL OF WIND TURBINES UNDER LARGE YAW ANGLES[J]. Acta Energiae Solaris Sinica. 2023, 44(3): 178-184 https://doi.org/10.19912/j.0254-0096.tynxb.2021-1281
中图分类号: TK513.5   

参考文献

[1] 封焯文, 戴秋华, 宋英龙, 等. 基于风向预测的新型偏航控制方法[J]. 太阳能学报, 2021, 42(2): 144-149.
FENG Z W, DAI Q H, SONG Y L, et al.A new yaw control method based on wind direction prediction[J]. Acta energiae solaris sinica, 2021, 42(2): 144-149.
[2] 高峰, 凌新梅, 刘强. 基于SCADA数据的风电机组偏航控制参数优化[J]. 太阳能学报, 2019, 40(6): 1739-1746.
GAO F, LING X M, LIU Q.Optimization of yaw control parameters of wind turbine based on SCADA data[J]. Acta energiae solaris sinica, 2019, 40(6): 1739-1746.
[3] 卢晓光, 岳红轩,吴鹏, 等. 大型风机偏航状态力学分析及偏航控制策略研究[J]. 可再生能源, 2014, 32(7): 973-977.
LU X G,YUE H X, WU P, et al.Mechanical analysis of yaw state and yaw control strategy of large-scale wind turbine[J]. Renewable energy resources, 2014, 32(7): 973-977.
[4] 滕云, 李景瑞, 李岩. 基于风速矢量的风机攻角与偏航全局鲁棒控制模型[J]. 可再生能源, 2018, 36(8): 1209-1213.
TENG Y, LI J R, LI Y.Global robust control model of wind turbine angle of attack and yaw based on wind speed vector[J]. Renewable energy resources, 2018, 36(8): 1209-1213.
[5] 潘茂华, 盛其虎, 张学伟. 偏航条件下大型风机的流固耦合分析[J]. 应用科技, 2017, 44(1): 1-4.
PAN M H, SHENG Q H, ZHENG X W.Fluid structure coupling analysis of large-scale wind turbine[J]. Applied science and technology, 2017, 44(1): 1-4.
[6] VAN DIJK M T. Yaw-misalignment and its impact on wind turbine loads and wind farm power output[C]//The Science of Making Torque from Wind Conference, Munich, Germany, 2016.
[7] KRAGH K A, HANSEN M H.Load alleviation of wind turbines by yaw misalignment[J]. Wind energy, 2014, 17: 971-982.

PDF(2361 KB)

Accesses

Citation

Detail

段落导航
相关文章

/