奥氏体不锈钢在四元硝酸盐中的动态腐蚀行为研究

马丽娜, 吴玉庭, 张灿灿, 鹿院卫, 董彦召, 焦新亮

太阳能学报 ›› 2023, Vol. 44 ›› Issue (3) : 497-503.

PDF(3073 KB)
欢迎访问《太阳能学报》官方网站,今天是
PDF(3073 KB)
太阳能学报 ›› 2023, Vol. 44 ›› Issue (3) : 497-503. DOI: 10.19912/j.0254-0096.tynxb.2021-1286

奥氏体不锈钢在四元硝酸盐中的动态腐蚀行为研究

  • 马丽娜1, 吴玉庭1, 张灿灿1, 鹿院卫1, 董彦召2, 焦新亮2
作者信息 +

DYNAMIC CORROSION BEHAVIORS OF AUTENNITIC STAINLESS STEEL IN QUATERNARY NITRATE-NIOTRITE MOLTEN SALT

  • Ma Li’na1, Wu Yuting1, Zhang Cancan1, Lu Yuanwei1, Dong Yanzhao2, Jiao Xinliang2
Author information +
文章历史 +

摘要

为探究本实验室配制的新型混合低熔点熔融四元硝酸盐与太阳能热发电系统中不锈钢合金的相容性,在搭建的动态腐蚀试验台进行实验条件为565 ℃,流速分别为0.6、1.3和2.0 m/s下1000 h 304不锈钢的动态腐蚀试验。实验结果表明:3种流速下304不锈钢均发生了氧化腐蚀。腐蚀失重随腐蚀时间的增加均呈现增加的趋势,变化规律更接近抛物线关系。同时,流速的变化会对腐蚀产生影响。此外,流速的增加对试片表面生成的腐蚀产物类型无影响。

Abstract

To explore the compatibility between the new mixture of low melting point fused quaternary nitrate-nitrite prepared in our laboratory and stainless steels in concentrating solar power system, the dynamic corrosion experiment of 304 stainless steel during 1000 h is carried out at 565 ℃ and the flow rate of 0.6, 1.3 and 2.0 m/s, respectively. The experimental results show that the oxidation corrosion of 304 stainless steel occurs at three flow rates. Corrosion weight loss (mmass) increases with the increasing corrosion time, and the change law is closer to the parabolic relationship. Meanwhile, the varied flow rates had obvious effects on corrosion behaviors. In addition, the increase in flow rate had no significant effects on the types of oxidation products.

关键词

太阳能热发电 / 不锈钢 / 腐蚀 / 熔盐 / 动态

Key words

concentrating solar power / stainless steel / corrosion / molten salt / dynamic

引用本文

导出引用
马丽娜, 吴玉庭, 张灿灿, 鹿院卫, 董彦召, 焦新亮. 奥氏体不锈钢在四元硝酸盐中的动态腐蚀行为研究[J]. 太阳能学报. 2023, 44(3): 497-503 https://doi.org/10.19912/j.0254-0096.tynxb.2021-1286
Ma Li’na, Wu Yuting, Zhang Cancan, Lu Yuanwei, Dong Yanzhao, Jiao Xinliang. DYNAMIC CORROSION BEHAVIORS OF AUTENNITIC STAINLESS STEEL IN QUATERNARY NITRATE-NIOTRITE MOLTEN SALT[J]. Acta Energiae Solaris Sinica. 2023, 44(3): 497-503 https://doi.org/10.19912/j.0254-0096.tynxb.2021-1286
中图分类号: TK513.5   

参考文献

[1] CHEN C, WU Y T, WANG S T, et al.Experimental investigation on enhanced heat transfer in transversally corrugated tube with molten salt[J]. Experimental thermal and fluid science, 2013, 47: 108-116.
[2] 孙华, 张鹏, 王建强. 传热储热用熔融硝酸盐及其腐蚀问题[J]. 腐蚀科学与防护技术, 2017, 29(5): 567-574.
SUN H, ZHANG P, WANG J Q.Corrosion problems related with molten nitrate salts for heat transfer and thermal storage[J]. Corrosion science and protection technology, 2017, 29(5): 567-574.
[3] GIL A, MEDRANO M, MARTOREll I, et al.State of the art on high temperature thermal energy storage for power generation. Part 1-concepts, materials and modellization[J]. Renewable and sustainable energy reviews, 2010, 14(1): 31-55.
[4] PENG Q, WEI X L, DING J, et al.High-temperature thermal stability of molten salt materials[J]. International journal of energy research, 2008, 32(12): 1164-1174.
[5] SANG L X, CAI M, REN N, et al.Improving the thermal properties of ternary carbonates for concentrating solar power through simple chemical modifications by adding sodium hydroxide and nitrate[J]. Solar energy materials and solar cells, 2014, 124: 61-66.
[6] GLATZMAER G.Summary report for concentrating solar power thermal storage workshop[R]. Colorado: National Renewable Energy Laboratory, 2011.
[7] REN N, WU Y T, MA C F, et al.Preparation and thermal properties of quaternary mixed nitrate with low melting point[J]. Solar energy materials and solar cells, 2014, 127: 6-13.
[8] LU Y W, LI Q, DU W B, et al.Natural convection heat transfer of molten salt in single energy storage tank[J]. Science China-technological sciences, 2016, 59(8): 1244-1251.
[9] WU Y T, LIU S W, XIONG Y X, et al.Experimental study on the heat transfer characteristics of a low melting point salt in a parabolic trough solar collector system[J]. Applied thermal engineering, 2015, 89: 748-754.
[10] DUNN R I, HEARPS P J, Wright M N.Molten-salt power towers: newly commercial concentrating solar storage[J]. Proceedings of the IEEE, 2012, 100(2): 504-515.
[11] PACHECO J E, BRADSHAW R W, DAWSON D B.Final test and evaluation results from the solar two project[R]. Albuquerque, NM, USA: Sandia National Laboratory, 2002.
[12] BARAKA A, ABDEL-ROHMAN A I, EL HOSARY A A. Corrosion of mild steel in molten sodium nitrate-potassium nitrate eutectic[J]. British corrosion journal, 1976, 11(1): 44-46.
[13] ZHANG H T, ZHAO Y J, ZHANG P, et al.Research progress of molten nitrate salts with application to solar energy utilization[J]. Materials review, 2015, 29(1): 54-57.
[14] KEARNEY D, KELLY B, HERRMANN U, et al.Engineering aspects of a molten salt heat transfer fluid in a trough solar field[J]. Energy, 2004, 29(5-6): 861-867.
[15] FERNÁNDEZ A G, CORTES M, FUENTEALBA E, et al. Corrosion properties of a ternary nitrate/nitrite molten salt in concentrated solar technology[J]. Renewable energy, 2015, 80: 177-183.
[16] WALCZAK M, PINEDA F, FERNÁNDEZ A G, et al. Materials corrosion for thermal energy storage systems in concentrated solarpower plants[J]. Renewable and sustainable energy reviews, 2018, 86: 22-44.
[17] FERNÁNDEZ A G, GALLEGUILLOS H, FUENTEALBA E, et al. Corrosion of stainless steels and low-Cr steel in molten Ca(NO3)2-NaNO3-KNO3 eutectic salt for direct energy storage in CSP plants[J]. Solar energy materials and solar cells, 2015, 141: 7-13.
[18] BRADSHAW R W, GOODS S H.Corrosion resistance of stainless steels during thermal cycling in alkali nitrate molten salts[R]. California: Sandia National Laboratories, 2001.
[19] ZHANG X W, LI H C, LI S Y, et al.Corrosion behavior of 304, 316 stainless steels and inconel 617 Ni-based alloy in molten nitrate salt[J]. Materials for mechanical engineering, 2019, 43(5): 24-29.
[20] XIAO Y, DING L L, LIAO W J.Corrosion resistances of 304, 316L and 321 austenite stainless steel in nitrate molten salt[J]. Materials reports, 2016, 30: 217-219.
[21] ZHOU C Z, LUO S, SUN Y H, et al.Corrosion behavior of 304 stainless steel in molten nitrate salt at different temperatures[J]. Materials for mechanical engineering, 2019, 43(5): 68-70.
[22] AHMED O.Corrosion behaviour of Aisi 304 stainless steel in contact with eutectic salt for concentrated solar power plant applications[D]. Orlando: University of Central Florida, 2013.
[23] SLUSSER J W, TITCOMB J B, HEFFELFINGER M T, et al.Corrosion in molten nitrate-nitrite salts[J]. The journal of the Minerals, Metals and Materials Society, 1985, 37(7): 24-27.
[24] ZAMBONIN P G, CARDETTA V L, SIGNORILE G.Solubility and detection of water in the (Na,K)NO3 eutectic melt[J]. Journal of electroanalytical chemistry and interfacial electrochemistry, 1970, 28(2): 237-243.
[25] NEŠIC S, SOLVI G T, ENERHAUG J. Comparison of the rotating cylinder and pipe flow tests for flow-sensitive carbon dioxide corrosion[J]. Corrosion, 1995, 51(10): 773-787.
[26] GARCÍA-MARTÍN G, LASANTA M I, ENCINAS-SÁNCHEZ V, et al. Evaluation of corrosion resistance of A516 steel in a molten nitrate salt mixture using a pilot plant facility for application in CSP plants[J]. Solar energy materials and solar cells, 2017, 161: 226-231.
[27] SRIDHARAN K, ANDERSON M, CORRADINI M.Molten salt heat transport loop: materials corrosion and heat transfer phenomena[R]. Madison: University of Wisconsin, Madison, 2008.
[28] HOU J, YU G J, ZENG C L, et al.Effects of exposing duration on corrosion performance in weld joint of Ni-Mo-Cr alloy in FLiNaK molten salt[J]. Journal of fluorine chemistry, 2016, 191: 110-119.
[29] AI H, HOU J, YE X X.Influence of graphite-alloy interactions on corrosion of Ni-Mo-Cr alloy in molten fluorides[J]. Journal of nuclear materials, 2018, 503: 116-123.
[30] BURSTEIN G T, PISTORIUS P C, MATTIN S P.The nucleation and growth of corrosion pits on stainless steel[J]. Corrosion science, 1993, 35(1-4): 57-62.
[31] MEDRANO M, GIL A, MARTORELL I, et al.State of the art on high temperature thermal energy storage for power generation. Part 2-case studies[J]. Renewable and sustainable energy reviews, 2010, 14(1): 56-72.
[32] WILLIAM E W.A working party report on prediction CO2 corrosion in the oil and gas Industry[J]. Materials characterization, 1995, 35(9): 141-142.
[33] GUO X P, TOMOE Y.Electrochemical behavior of carb on steel in carbon dioxide-saturated diglycolam in esolutions[J]. Corrosion, 1998, 54: 931-939.
[34] VIDEM K, DUGSTAD A.Effect of flow rate, pH, Fe2+ concentration and steel quality on CO2 corrosion of carbon steel, 87/42[R]. Houston: NACE, 1987.
[35] SONA C S, GAJBHIYE B D, HULE P V, et al.High temperature corrosion studies in molten salt-FLiNaK[J]. British corrosion journal, 2014, 49(4): 287-295.
[36] ZHU Y S, HOU J, YU G J, et al.Effects of exposing temperature on corrosion performance of weld joint of a Ni-Mo-Cr alloy[J]. Journal of fluorine chemistry, 2016, 182: 69-75.
[37] TULLMIN M, ROBERGE P R.Corrosion of metallic materials[J]. IEEE transactions on reliability, 44(2): 271-278.
[38] QIU J, ZOU Y, YU G J.Compatibility of container materials with Cr in molten FLiNaK salt[J]. Journal of fluorine chemistry, 2014, 168: 69-74.
[39] MURARKA S P, ANAND M S, AGARWALA R P.Diffusion of chromium in nickel[J]. Journal of applied physics, 1964, 35(4): 1339-1341.

基金

国家自然科学基金(51906003); 内蒙古自治区重大科技专项项目(2021SZD0036); 河北省重点研发计划(19214303D)

PDF(3073 KB)

Accesses

Citation

Detail

段落导航
相关文章

/