基于偏航尾流模型的风电场功率协同优化研究

李雄威, 徐家豪, 朱润泽, 李庚达

太阳能学报 ›› 2022, Vol. 43 ›› Issue (10) : 144-151.

PDF(4120 KB)
欢迎访问《太阳能学报》官方网站,今天是
PDF(4120 KB)
太阳能学报 ›› 2022, Vol. 43 ›› Issue (10) : 144-151. DOI: 10.19912/j.0254-0096.tynxb.2021-1292

基于偏航尾流模型的风电场功率协同优化研究

  • 李雄威, 徐家豪, 朱润泽, 李庚达
作者信息 +

STUDY ON POWER COLLABORATIVE OPTIMIZATION OF WIND FARM BASED ON YAW WAKE MODEL

  • Li Xiongwei, Xu Jiahao, Zhu Runze, Li Gengda
Author information +
文章历史 +

摘要

为减小风电场尾流效应的影响,提升风电场整体发电量,提出一种基于偏航尾流模型的风电场功率协同优化方法。首先建立风电场偏航尾流模型,该模型包括用于计算单机组尾流速度分布的Jensen-Gaussian尾流模型、尾流偏转模型及多机组尾流叠加模型,对各机组风轮前来流风速进行求解;再根据来流风速计算风电场输出功率,并以风电场整体输出功率最大为优化目标,利用拟牛顿算法协同优化各机组轴向诱导因子和偏航角度。以4行4列方形布置的16台NREL-5 MW风电机组为对象进行仿真研究。结果表明,所提出的基于偏航尾流模型的风电场功率协同优化方法能显著提升风电场整体输出功率。

Abstract

In order to reduce the wake effect and improve the overall power output of wind farms, a wind farm power collaborative optimization method based on yaw wake model was proposed. Firstly, a yaw wake model of wind farms was established for calculating the incoming wind speed of each wind turbine. The yaw wake model involved the Jensen-Gaussian wake model to calculate the velocity distribution of single unit wake, as well as the wake deflection model and the wake superposition model of multiple wind turbines. Then, the wind farm power output was calculated by the incoming wind speed of each wind turbine. The optimization objective was set to maximize the overall power output of wind farms, and an algorithm based on quasi Newton method was used to collaboratively optimize the axial inducement factor and yaw offsets of each wind turbine. The simulation of 16 NREL-5 MW wind turbines that were arranged in four rows and four columns was carried out. The results showed that the proposed wind farm power collaborative optimization method based on yaw wake model could significantly improve the overall power output of wind farms.

关键词

风电场 / 风电机组 / 尾流 / 优化控制 / 偏航控制

Key words

wind farm / wind turbines / wakes / optimal control / yaw control

引用本文

导出引用
李雄威, 徐家豪, 朱润泽, 李庚达. 基于偏航尾流模型的风电场功率协同优化研究[J]. 太阳能学报. 2022, 43(10): 144-151 https://doi.org/10.19912/j.0254-0096.tynxb.2021-1292
Li Xiongwei, Xu Jiahao, Zhu Runze, Li Gengda. STUDY ON POWER COLLABORATIVE OPTIMIZATION OF WIND FARM BASED ON YAW WAKE MODEL[J]. Acta Energiae Solaris Sinica. 2022, 43(10): 144-151 https://doi.org/10.19912/j.0254-0096.tynxb.2021-1292
中图分类号: TK89   

参考文献

[1] 孙辉, 吴姝雯, 王超. 尾流效应对风电场功率输出的影响分析[J]. 华北电力大学学报(自然科学版), 2015, 21(4): 45-46.
SUN H, WU S W, WANG C.Impact analysis of wake effecton wind farm output[J]. Journal of North China Electric Power University(nature science edition), 2015, 21(4): 45-46.
[2] DIJK M T, WINGERDEN J W, ASHURI T, et al.Yaw-misalignment and its impact on wind turbine loads and wind farm power output[J]. Journal of physics: conference series, 2016, 753(6): 062013.
[3] ABDULLAH M A, YATIM A H M, TAN C W, et al. A review of maximum power point tracking algorithms for wind energy systems[J]. Renewable and sustainable energy reviews, 2012, 16(5): 3220-3227.
[4] MARTINEZ-TOSSAS L A, ANNONI J, FLEMING P A, et al. The aerodynamics of the curled wake: a simplified model in view of flow control[J]. Wind energy science, 2019, 4(1): 127-138.
[5] FLEMING P A, KING J, SIMLEY E, et al.Continued results from a field campaign of wake steering applied at a commercial wind farm: part 2[J]. Wind energy science, 2020, 5(3): 945-958.
[6] 顾波, 胡昊, 刘永前, 等. 考虑尾流效应的风电场优化控制技术研究[J]. 太阳能学报, 2018, 39(2): 359-368.
GU B, HU H, LIU Y Q, et al.Study of wind farm optimal control technology considering wake effect[J]. Acta energiae solaris sinica, 2018, 39(2): 359-368.
[7] 刘军, 曹梦娇. 考虑尾流影响时风电场功率最大化优化控制[J]. 电气传动, 2020, 50(12): 54-58.
LIU J, CAO M J.Optimal control of wind farm power maximization considering wake effect[J]. Electric drive, 2020, 50(12):54-58.
[8] FLEMING P A, GEBRAAD P M, LEE S, et al.Evaluating techniques for redirecting turbinewakes using SOWFA[J]. Renewable energy, 2014, 70: 211-218.
[9] 宁旭, 曹留帅, 万德成. 基于尾流模型的风场偏航控制优化研究[J]. 海洋工程, 2020, 38(5): 80-90.
NING X, CAO L S, WAN D C.Study of wind farm optimization through yaw control based on analytical wake model[J]. The ocean engineering, 2020, 38(5): 80-90.
[10] DIJK M T, WINGERDEN J W, ASHURI T, et al.Wind farm multi-objective wake redirection for optimizing power production and loads[J]. Energy, 2017, 121: 561-569.
[11] JENSEN N.A note on wind generator interaction. Technical report Ris-M-2411[R]. Roskilde, Denmark: Risø National Laboratory, 1983.
[12] GAO X, YANG H, LU L.Optimization of wind turbine layout position in a wind farm using a newly-developed two-dimensional wake model[J]. Applied energy, 2016, 174:192-200.
[13] JIMENEZ A, CRESPO A, MIGOYA E.Application of a LES technique to characterize the wake deflection of a wind turbine in yaw[J]. Wind energy, 2009, 13(6): 559-572.
[14] 曹邦兴. 拟牛顿法在求解无约束多维函数极值中的应用[J]. 大理学院学报, 2019, 4(6): 1-4.
CAO B X.The application of quasi-newton method in solving the unconstrained multidimensional function extremum[J]. Journal of Dali University, 2019, 4(6): 1-4.
[15] 王磊, 刘利利, 齐俊艳, 等. 基于高斯滤波的三维水声无线传感网络节点定位算法[J]. 河南理工大学学报(自然科学版), 2021, 40(4): 147-153.
WANG L, LIU L L, QI J Y, et al.Node location algorithm for 3D underwater acoustic wireless sensor network based on Gaussian filter[J]. Journal of Henan Polytechnic University(natural science), 2021, 40(4): 147-153.

基金

电力系统国家重点实验室资助课题(SKLD20KM25); 国家能源集团科技创新项目(GJNY-20-180)

PDF(4120 KB)

Accesses

Citation

Detail

段落导航
相关文章

/