RESEARCH ON FREQUENCY MODULATION CONTROL STRATEGY OF AUXILIARY POWER GRID IN BATTERY ENERGY STORAGE SYSTEM
Li Jianlin1, Qu Shukang1, Ma Suliang1, Zeng Wei2, Xiong Junjie2
Author information+
1. College of Electrical and Control Engineering, North China University of Technology, Beijing 100144, China; 2. State Grid Jiangxi Electric Power Co., Ltd., Electric Power Research Institute, Nanchang 330096, China
With the rapid development of new energy in China, the frequency fluctuation of power grid and other problems are caused. Battery energy storage is widely used to assist traditional units to participate in frequency modulation services. Firstly, this paper combs the existing energy storage related policies and relevant literature in China, and summarizes the evolution law of energy storage assisted frequency modulation market environment. Then in the first part of the article, it focuses on the principle process of traditional unit frequency modulation and battery energy storage system participating in primary frequency modulation, and compares the differences between virtual droop control and virtual inertia control strategy in detail; In the second part, the battery energy storage system participating in secondary frequency modulation is deeply analyzed, and the stage power distribution is analyzed in detail. At the same time, a control strategy model considering multiple constraints is proposed, which provides an effective reference basis for the energy storage power station participating in frequency modulation output. Finally, constructive suggestions are put forward for the future development of energy storage system, and the next research direction is prospected.
Li Jianlin, Qu Shukang, Ma Suliang, Zeng Wei, Xiong Junjie.
RESEARCH ON FREQUENCY MODULATION CONTROL STRATEGY OF AUXILIARY POWER GRID IN BATTERY ENERGY STORAGE SYSTEM[J]. Acta Energiae Solaris Sinica. 2023, 44(3): 326-335 https://doi.org/10.19912/j.0254-0096.tynxb.2021-1297
中图分类号:
TK513.5
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] 张子扬, 张宁, 杜尔顺, 等. 双高电力系统频率安全问题评述及其应对措施[J]. 中国电机工程学报, 2022, 42(1): 1-2. ZHANG Z Y, ZHANG N, DU E S, et al.Review and countermeasures on frequency security issues of power systems with highshares of renewables and power electronics[J]. Proceedings of the CSEE, 2022, 42(1): 1-2. [2] 刘庆楷, 刘明波, 陆文甜. 考虑退化成本的电池储能参与调频辅助服务市场的控制方法[J]. 电网技术, 2021,45(8): 3043-3051. LIU Q K, LIU M B, LU W T.Control method for battery energy storage participating in frequency regulation market considering degradation cost[J]. Power system technology, 2021, 45(8): 3043-3051. [3] 孙玉树, 杨敏, 师长立, 等. 储能的应用现状和发展趋势分析[J]. 高电压技术,2020, 46(1): 80-89. SUN Y S, YANG M, SHI C L, et al.Analysis of applica-tion status and development trend of energy storage[J]. High voltage engineering, 2020, 46(1): 80-89. [4] 李建林, 李雅欣, 周喜超, 等. 储能商业化应用政策解析[J]. 电力系统保护与控制, 2020, 48(19): 168-178. LI J L, LI Y X,ZHOU X C, et al.Analysis of energy storage policy in commercial application[J]. Power system protection and control, 2020, 48(19): 168-178. [5] 颜晨煜, 樊艳芳, 姚波. 采用自适应变分模态分解的混合储能平滑光伏出力波动控制策略[J]. 高电压技术,2019, 45(6): 1898-1906. YAN C Y, FAN Y F, YAO B.Strategy for smoothing photovoltaic power fluctuation of hybrid energy storage system using self-adaptive variational mode decomposition[J]. High voltage engineering, 2019, 45(6): 1898-1906. [6] 邵丽华, 章竹耀, 张春龙,等. 储能电池荷电状态与平抑风电出力波动协调运行策略[J]. 电力建设, 2017, 38(1): 84-88. SHAO L H, ZHANG Z Y, ZHANG C L, et al.Coordi-nated operation strategy of storage battery SOC and smoothing wind power fluctuation[J]. Electric power construction, 2017, 38(1): 84-88. [7] 雷珽, 欧阳曾恺, 李征, 等. 平抑风能波动的储能电池SOC与滤波协调控制策略[J]. 电力自动化设备, 2015, 35(7):126-131. LEI T, OUYANG Z K, LI Z, et al.Coordinated control of battery SOC maintaining and filtering for wind power fluctuation smoothing[J]. Electric power automation equipment, 2015, 35(7): 126-131. [8] 娄素华, 吴耀武, 崔艳昭, 等. 电池储能平抑短期风电功率波动运行策略[J]. 电力系统自动化, 2014, 38(2): 17-22. LOU S H, WU Y W, CUI Y Z, et al.Battery energy storage calms short-term wind electric power fluctuation operation strategy[J]. Automation of electric power systems, 2014, 38(2): 17-22. [9] 贾天下, 陈磊, 闵勇, 等. 快速响应储能参与一次调频的控制策略[J]. 清华大学学报(自然科学版), 2021, 61(5): 429-436. JIA T X, CHEN L, MIN Y, et al.Control strategy for primary frequency regulation with the participation of a quick response energy storage[J]. Journal of Tsinghua University(science and technology), 2021, 61(5): 429-436. [10] 韩晓娟, 程成, 籍天明, 等. 计及电池使用寿命的混合储能系统容量优化模型[J]. 中国电机工程学报, 2013, 33(34): 91-97. HAN X J, CHENG C, JI T M, et al.Considering battery life capacity optimization model of combined energy storage system[J]. Proceedings of the CSEE, 2013, 33(34): 91-97. [11] 李军徽, 侯涛, 严干贵, 等. 计及调频成本和荷电状态恢复的多储能系统调频功率双层优化[J]. 中国电机工程学报, 2021, 41(23): 8020-8033. LI J H, HOU T, YAN G G, et al.Two-layer optimization of frequency modulation power in multi-battery energy storage system considering frequency modulation cost and recovery of state of charge[J]. Proceedings of the CSEE, 2021, 41(23): 8020-8033. [12] 刘世林, 文劲宇, 孙海顺, 等. 风电并网中的储能技术研究进展[J]. 电力系统保护与控制, 2013, 41(23): 145-153. LIU S L, WEN J Y, SUN H S, et al.Progress on applica-tions of energy storage technology in wind power integrated to the grid[J]. Power system protection and control, 2013, 41(23): 145-153. [13] 刘忠, 杨陈, 蒋玮, 等. 基于一致性算法的直流微电网储能系统功率分配技术[J]. 电力系统自动化, 2020, 44(7): 61-69. LIU Z, YANG C, JIANG W, et al.Consensus algorithm based power distribution technology for energy storage system in DC microgrid[J]. Automation of electric power systems, 2020, 44(7): 61-69. [14] ZHAO T, PARISIO A, MILANOVIĆ J V.Distributed control of battery energy storage systems for improved frequency regulation[J]. IEEE transactions on power systems, 2020, 35(5): 3729-3738. [15] SANDULEAC M, TOMA L, EREMIA M, et al.Primary frequency control in a power system with battery energy storage systems[C]//2018 IEEE International Conference on Environment and Electrical Engineering and 2018 IEEE Industrial and Commercial Power Systems Europe(EEEIC/I&CPS Europe), Palermo, Italy, 2018: 1-5. [16] 孙冰莹. 储能辅助火电机组AGC调频运行方法及容量配置研究[D]. 北京: 华北电力大学, 2018. SUN B Y.Research on operation strategy and capacity configuration method of energy storage combined with thermal power unit in AGC[D]. Beijing: North China Electric Power University, 2018. [17] 李欣然, 黄际元, 陈远扬, 等. 大规模储能电源参与电网调频研究综述[J]. 电力系统保护与控制, 2016, 44(7): 145-153. LI X R, HUANG J Y, CHEN Y Y, et al.Review on large-scale involvement of energy storage in power grid fast fre-quency regulation[J]. Power system protection and control, 2016, 44(7): 145-153. [18] 丁勇, 华新强, 蒋顺平, 等. 大容量电池储能系统一次调频控制策略[J]. 电力电子技术, 2020, 54(11): 38-41, 46. DING Y, HUA X Q, JIANG S P, et al.A primary frequency regulation strategy of large-capacity battery energy storage system[J]. Power electronics, 2020, 54(11): 38-41, 46. [19] 李林高. 电池储能系统辅助火电机组参与电网调频的控制策略优化[D]. 太原: 山西大学, 2020. LI L G.Control strategy optimization of battery energy stroagy system to assist thermal power units to participate in grid frequency modulation[D]. Taiyuan: Shanxi University, 2020. [20] 于雷. 电池储能系统参与电网调频的控制策略研究[D].乌鲁木齐: 新疆大学, 2020. YU L.Reserach on control strategy of battery energy storage system participating in grid frequency regulation[D]. Urumqi: Xinjiang University, 2020. [21] 焦盘龙. 储能辅助火电机组二次调频控制策略及容量优化配置研究[D]. 吉林: 东北电力大学, 2020. JIAO P L.Reserach on control strategy and capacity optimi-zation configuration method of energy storage combined with thermal power unit in secondary frequency[D]. Jilin: Northeast Electric Power University, 2020. [22] 吕力行, 陈少华, 张小白, 等. 考虑规模化电池储能SOC一致性的电力系统二次调频控制策略[J]. 热力发电, 2021, 50(7): 108-117. LYU L X, CHEN S H, ZHANG X B, et al.Control strategy for secondary frequency regulation of power system considering SOC consensus of large-scale battery energy storage[J]. Thermal power generation, 2021, 50(7): 108-117. [23] 李若, 李欣然, 谭庄熙, 等. 考虑储能电池参与二次调频的综合控制策略[J]. 电力系统自动化, 2018, 42(8):74-82. LI R, LI X R, TAN Z X, et al.Integrated control strategy considering energy storage battery participating in secondary frequency regulation[J]. Automation of electric power systems, 2018, 42(8): 74-82. [24] 汤杰, 李欣然, 黄际元, 等. 以净效益最大为目标的储能电池参与二次调频的容量配置方法[J]. 电工技术学报, 2019, 34(5): 963-972. TANG J, LI X R, HUANG J Y, et al.Capacity allocation of BESS in secondary frequency regulation with the goal of maximum net benefit[J]. Transactions of China Electrotechnical Society, 2019, 34(5): 963-972. [25] 胡泽春, 夏睿, 吴林林, 等. 考虑储能参与调频的风储联合运行优化策略[J]. 电网技术, 2016, 40(8): 2251-2257. HU Z C, XIA R, WU L L, et al.Joint operation optimization of wind-storage union with energy storage participating frequency regulation[J]. Power system technology, 2016, 40(8): 2251-2257. [26] 崔红芬, 杨波, 蒋叶, 等. 基于模糊控制和 SOC 自恢复储能参与二次调频控制策略[J]. 电力系统保护与控制, 2019, 47(22): 89-97. CUI H F, YANG B, JIANG Y, et al.Strategy based on fuzzy control and self adaptive modification of SOC involved in sec-ondary frequency regulation with battery energy storage[J]. Power system protection and control, 2019, 47(22): 89-97. [27] 于昌海, 吴继平, 杨海晶, 等. 规模化储能系统参与电网调频的控制策略研究[J]. 电力工程技术, 2019, 38(4): 68-73. YU C H, WU J P, YANG H J, et al.Frequency regula tion strategy for power grid incorporating large-scale energy storage[J]. Electric power engineering technology, 2019, 38(4): 68-73. [28] ZHAO T, PARISIO A, MILANOVIĆ J V.Distributed control of battery energy storage systems for improved frequency regulation[J]. IEEE transactions on power systems, 2020, 35(5): 3729-3738. [29] 肖春梅. 电储能提升火电机组调频性能研究[J]. 热力发电, 2021, 50(6): 98-105. XIAO C M.Research on using electric energy storage to improve frequency regulation performance of thermal power units[J]. Thermal power generation, 2021, 50(6): 98-105. [30] 胡泽春, 谢旭, 张放, 等. 含储能资源参与的自动发电控制策略研究[J]. 中国电机工程学报, 2014, 34(29): 5080-5087. HU Z C, XIE X, ZHANG F, et al.Research on automatic generation control strategy incorporating energy storage resources[J]. Proceedings of the CSEE, 2014, 34(29): 5080-5087. [31] PILLAI J R, BAK-JENSEN B.Integration of vehicle-to-grid in the western danish power system[J]. IEEE transactions on sustainable energy, 2011, 2(1): 12-19. [32] WANG Y, XU Y, TANG Y, et al.Aggregated energy storage for power system frequency control: a finite-time consensus approach[J]. IEEE transactions on smart grid, 2019, 10(4): 3675-3686. [33] 刘起兴, 和识之, 卢伟辉, 等. 电池储能辅助二次调频的模型预测控制方法[J]. 电测与仪表,2020, 57(23):119-125. LIU Q X, HE S Z, LU W H, et al.Model predictive control method fir battery energy storage assisting secondary frequency regulation[J]. Electrical measurement & instrumentation, 2020, 57(23): 119-125. [34] HIRASAWA T, OBARA S, NAGANO K, et al.Development of an optimum operation algorithm for smart house with storage battery control based on demonstration tests[C]//IEEE Electrical Power and Energy Conference(EPEC), Toronto, Canada, 2018: 1-6. [35] JIANG Q Y, GONG Y Z, WANG H J.A battery energy storage system dual-layer control strategy for mitigating wind farm fluctuations[J]. IEEE transactions on power systems, 2013, 28(3): 3263-3273. [36] ZHANG S Q, MISHRA Y, SHAHIDEHPOUR M.Fuzzy-logic based frequency controller for wind farms augmented with energy storage systems[J]. IEEE transactions on power systems, 2016, 31(2): 1595-1603. [37] 黄际元, 李欣然, 曹一家, 等. 面向电网调频应用的电池储能电源仿真模型[J]. 电力系统自动化,2015, 39(18): 20-24, 74. HUANG J Y, LI X R, CAO Y J, et al.Battery energy storge power supply simulation model for power grid frequency regulation[J]. Automation of electric power systems, 2015, 39(18): 20-24, 74.