碘三离子后处理对钙钛矿太阳电池的影响研究

李星宇, 董海悦, 夏天, 刘玮婷, 姚迪圣, 龙飞

太阳能学报 ›› 2023, Vol. 44 ›› Issue (3) : 409-414.

PDF(2088 KB)
欢迎访问《太阳能学报》官方网站,今天是
PDF(2088 KB)
太阳能学报 ›› 2023, Vol. 44 ›› Issue (3) : 409-414. DOI: 10.19912/j.0254-0096.tynxb.2021-1303

碘三离子后处理对钙钛矿太阳电池的影响研究

  • 李星宇1, 董海悦1, 夏天1, 刘玮婷1, 姚迪圣1,2, 龙飞1~3
作者信息 +

INVESTIGATION OF POST-TREATMENT VIA TRI-IODINE IONS FOR PEROVSKITE SOLAR CELLS

  • Li Xingyu1, Dong Haiyue1, Xia Tian1, Liu Weiting1, Yao Disheng1,2, Long Fei1~3
Author information +
文章历史 +

摘要

采用碘三离子(I3-)作为提升钙钛矿太阳电池性能的界面修饰材料,对钙钛矿体相及上层空穴传输材料的接触界面进行修饰和改性,钝化光活性层上表面缺陷,以优化光电转换器件的转换效率。由反溶剂法和后处理的形式,制备平面异质结电池,运用该界面钝化策略改善后的器件效率达到18.9%,且电池的稳定性也得到增强,600 h后仅有5%的性能衰减。通过物相和光电性质等表征与测试,系统地研究电池的形貌及性能参数,探究不同浓度的I3-对器件性能的影响作用和机理。研究发现,该缺陷钝化策略对钙钛矿膜层进行处理后,能有效改善钙钛矿材料的结晶性,减少其表面陷阱态缺陷,降低钙钛矿与空穴传输层的载流子界面传输势垒,且I3-与钙钛矿能形成钝化层,起到隔绝水氧的作用,使其稳定性得到改善。

Abstract

Tri-iodine anion I3- is employed as a defect passivator for post-treatment to as-prepared perovskite films, which remarkably improves the interfacial contact between the light-absorbing and the hole transport layer. This strategy on defects is found to significantly enhance power conversion efficiency of planar heterojunction devices to 18.9% by a one-step film deposition method. Meanwhile, the operational stability of PSCs is effectively improved that an efficiency decline of only 5% is observed in the I3--treated device after aging for 600 hours. The film morphology, optoelectrical properties, and the effect and mechanism of I3- with different concentrations on the device performance are investigated by measurement of phase and optoelectronic. The results show that the defect passivation strategy with post-treatment of I3- can benefit preferential growth orientation of the perovskite crystals, reduce trap-state defects, and eliminate the potential energy barrier between the perovskite and the hole transport layer. Furthermore, I3- is helpful to form an in-situ protecting layer which prevents the perovskite material from moisture and oxygen attacks.

关键词

钙钛矿太阳电池 / 缺陷钝化 / 反溶剂 / 界面修饰 / 碘三离子 / 后处理 / 稳定性

Key words

perovskite solar cells / defect passivation / anti-solvent / interface modification / tri-iodine ions / post-treatment / stability

引用本文

导出引用
李星宇, 董海悦, 夏天, 刘玮婷, 姚迪圣, 龙飞. 碘三离子后处理对钙钛矿太阳电池的影响研究[J]. 太阳能学报. 2023, 44(3): 409-414 https://doi.org/10.19912/j.0254-0096.tynxb.2021-1303
Li Xingyu, Dong Haiyue, Xia Tian, Liu Weiting, Yao Disheng, Long Fei. INVESTIGATION OF POST-TREATMENT VIA TRI-IODINE IONS FOR PEROVSKITE SOLAR CELLS[J]. Acta Energiae Solaris Sinica. 2023, 44(3): 409-414 https://doi.org/10.19912/j.0254-0096.tynxb.2021-1303
中图分类号: TM914.4   

参考文献

[1] 李盛喆, 周忠信, 陈新亮, 等. 单色近红外激光对晶硅电池光伏特性影响的研究[J]. 太阳能学报, 2020, 41(11): 79-85.
LI S Z, ZHOU Z X, CHEN X L, et al.Influence of monochromatic near-infrared laser on photovoltaic characteristics of crystalline silicon solar cell[J]. Acta energiae solaris sinica, 2020, 41(11): 79-85.
[2] ASSADI M K, BAKHODA S, SAIDUR R, et al.Recent progress in perovskite solar cells[J]. Renewable and sustainable energy reviews, 2018, 81: 2812-2822.
[3] JIANG Q, ZHANG L Q, WANG H L, et al.Enhanced electron extraction using SnO2 for high-efficiency planar-structure HC(NH2)2PbI3-based perovskite solar cells[J]. Nature energy, 2017, 2(1): 1-7.
[4] KIM J Y, LEE J W, JUNG H S, et al.High-efficiency perovskite solar cells[J]. Chemical reviews, 2020, 120(15): 7867-7918.
[5] PARK N G.Perovskite solar cells: an emerging photovoltaic technology[J]. Materials today, 2015, 18(2): 65-72.
[6] 魏静, 赵清, 俞大鹏, 等. 钙钛矿太阳能电池: 光伏领域的新希望[J]. 中国科学, 2014, 44(8): 801-821.
WEI J, ZHAO Q, YU D P, et al.Perovskite solar cells: a new hope in photovoltaics[J]. Science China press, 2014, 44(8): 801-821.
[7] LI Y, SHI J W, ZHENG J H, et al.Acetic acid assisted crystallization strategy for high efficiency and long-term stable perovskite solar cell[J]. Advanced science, 2020, 7(5): 1903368.
[8] BUIN A, PIETSCH P, XU J X, et al.Materials processing routes to trap-free halide perovskites[J]. Nano letters, 2014, 14(11): 6281-6286.
[9] SHI J J, XU X, LI D M, et al.Interfaces in perovskite solar cells[J]. Small, 2015, 11(21): 2472-2486.
[10] WU W Q, RUDD P N, NI Z Y, et al.Reducing surface halide deficiency for efficient and stable iodide-based perovskite solar cells[J]. Journal of the American Chemical Society, 2020, 142(8): 3989-3996.
[11] CHEN Q, ZHOU H P, SONG T B, et al.Controllable self-induced passivation of hybrid lead iodide perovskites toward high performance solar cells[J]. Nano letters, 2014, 14(7): 4158-4163.
[12] LI N X, TAO S X, CHEN Y H, et al.Cation and anion immobilization through chemical bonding enhancement with fluorides for stable halide perovskite solar cells[J]. Nature energy, 2019, 4(5): 408-415.
[13] ZHENG X P, CHEN B, DAI J, et al.Defect passivation in hybrid perovskite solar cells using quaternary ammonium halide anions and cations[J]. Nature energy, 2017, 2(7): 17102.
[14] YANG W S, PARK B W, JUNG E H, et al.Iodide management in formamidinium-lead-halide-based perovskite layers for efficient solar cells[J]. Science, 2017, 356(6345): 1376-1379.
[15] CAO X B, ZHI L L, JIA Y, et al.A review of the role of solvents in formation of high-quality solution-processed perovskite films[J]. ACS applied materials & interfaces, 2019, 11(8): 7639-7654.
[16] 石骥硕, 吕龙锋, 侯延冰. 碘化铅残留对钙钛矿太阳电池性能影响[J]. 太阳能学报, 2018, 39(6): 1619-1624.
SHI J S, LYU L F, HOU Y B.Effect of remnant PbI2 on performance of perovskite solar cell[J]. Acta energiae solaris sinica, 2018, 39(6): 1619-1624.
[17] AJAYAN J, NIRMAL D, MOHANKUMAR P, et al.A review of photovoltaic performance of organic/inorganic solar cells for future renewable and sustainable energy technologies[J]. Superlattices and microstructures, 2020, 143: 106549.
[18] YANG W S, NOH J H, JEON N J, et al.High-performance photovoltaic perovskite layers fabricated through intramolecular exchange[J]. Science, 2015, 348(6240): 1234-1237.
[19] BANERJEE R, DAS A, DASGUPTA S.Kinetics of oxidation of ethanol, isopropyl alcohol, and benzyl alcohol by [ethylenebis(biguanide)] silver (III) cation in aqueous perchloric acid solutions[J]. Journal of the Chemical Society, Dalton transactions, 1990(4):1207-1212.
[20] EPERON G E, BURLAKOV V M, DOCAMPO P, et al.Morphological control for high performance, solution-processed planar heterojunction perovskite solar cells[J]. Advanced functional materials, 2014, 24(1): 151-157.
[21] YIN W J, SHI T T, YAN Y F.Unusual defect physics in CH3NH3PbI3 perovskite solar cell absorber[J]. Applied physics letters, 2014, 104(6): 063903.
[22] YANG Y, PHAM N D, YAO D, et al.Interface engineering to eliminate hysteresis of carbon-based planar heterojunction perovskite solar cells via CuSCN incorporation[J]. ACS applied materials & interfaces, 2019, 11(31): 28431-28441.

基金

国家自然科学基金(U20A20245); 广西“特聘专家”专项经费资助(2019B06); 广西建筑新能源与节能重点实验室项目(桂科能18-J-21-6); 桂林理工大学科研启动基金(GUTRD2000002727)

PDF(2088 KB)

Accesses

Citation

Detail

段落导航
相关文章

/