在太阳能热发电站中,抛物面槽式集热系统多回路的流量分配特性对集热工质出口温度和电站运行性能具有重要影响。传统U型集热回路采用调节阀可实现各回路流量的平衡分配,但对系统的控制水平要求较高,且建设成本较大。该文以熔盐槽式集热系统为研究对象,提出采用Z型布置结合母管变径的新型集热回路,以实现多回路流量自平衡;通过开展流量分配的理论设计计算,以及基于Apros软件搭建的集热系统动态仿真模型,研究太阳直接法向辐射DNI、入口质量流量变化以及云遮扰动工况下,Z型集热回路的流量分配、出口温度和回路压降的稳态和动态变化规律。研究结果表明,槽式集热回路Z型布置结合母管变径的方式在稳态和瞬态工况下都具有较好的流量自平衡特性。
Abstract
In the parabolic trough concentrating solar power plants, the multi-circuit flow distribution characteristics in the solar field have an important influence on the outlet temperature of the HTF (heat transfer fluid) and the operating performance of the plants. The traditional U-type solar field achieves its balanced flow distribution by regulating valves, which has higher requirements for the control level and higher construction cost. In this paper, parabolic trough solar field with molten salt as HTF is chosen as the research object, and a new Z-type layout of solar field is proposed, which realizes multi-loop self-balanced flow distribution by changing the diameter of the main-pipes. Through theoretical design and dynamic simulation based on Apros software, the steady state and dynamic performances of flow distribution, outlet temperature and pressure drop of the Z-type heat collecting loop under the change of DNI, inlet mass flow and cloud disturbance are studied. The results show that the Z-type solar field layout combined with the change of the main pipe diameter has good flow self-balance performance under both steady-state and dynamic conditions.
关键词
太阳能热发电 /
集热器 /
流体流动 /
熔融盐 /
Apros
Key words
solar thermal power /
collectors /
flow of fluids /
molten salt /
Apros
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] 陈昊, 王纲. 太阳能发电潜力及前景分析[J]. WTO经济导刊, 2012(2-3): 48-51.
CHEN H, WANG G.Analysis of potential and prospects of solar power[J]. China WTO tribune, 2012(2-3): 48-51.
[2] 袁炜东. 国内外太阳能光热发电发展现状及前景[J]. 电力与能源, 2015, 36(4): 487-490.
YUAN W D.Current development and prospect of solar-thermal power generation in China and abroad[J]. Power & energy, 2015, 36(4): 487-490.
[3] PROJECTS. King of Spain opens Gemasolar plant[J]. Renewable energy focus, 2011, 12(5): 6.
[4] 孔令刚, 陈鑫龙, 张志勇, 等. 线性菲涅尔式光热发电技术现状及发展趋势[J]. 兰州交通大学学报, 2020, 39(6): 51-57.
KONG L G, CHEN X L, ZHANG Z Y, et al.Research status and development trend of linear Fresnel concentrating solar power technology[J]. Journal of Lanzhou Jiaotong University, 2020, 39(6): 51-57.
[5] 张延安, 郭建芳. 青海省太阳能发电经济性研究及政策建议[J]. 环境与可持续发展, 2017, 42(5): 74-76.
ZHANG Y A, GUO J F.Economy and policy suggestions of solar power generation in Qinghai[J]. Environment and sustainable development, 2017, 42(5): 74-76.
[6] 王璐. 中国首个大型太阳能光热示范电站正式投运[J]. 电力设备管理, 2018(10): 94.
WANG L, China’s first large solar photothermal demonstration power station officially launched[J]. Power equipment management, 2018(10): 94.
[7] ALMASABI A, ALOBAIDLI A, ZHANG T J.Transient characterization of multiple parabolic trough collector loops in a 100 MW CSP plant for solar energy harvesting[J]. Energy procedia, 2015, 69: 24-33.
[8] KARVOUNIS P, KOUBOGIANNIS D, HONTZOPOULOS E, et al.Numerical and experimental study of flow characteristics in solar collector manifolds[J]. Energies, 2019, 12(8): 1431.
[9] WU J J, HAN Y, HOU H J, et al.Optimization of solar field layout and flow velocity in a solar-aided power generation system[J]. Energy, 2020, 208: 118344.
[10] 王慧富, 吴玉庭, 张晓明, 等. 熔盐槽式太阳能热发电站集热系统性能研究[J]. 太阳能学报, 2020, 41(6): 317-325.
WANG H F, WU Y T, ZHANG X M, et al.Performance research on solar field of molten salt parabolic trough solar power plants[J]. Acta energiae solaris sinica, 2020,41(6): 317-325.
[11] 于刚, 罗娜, 侯宏娟, 等. 槽式集热系统流速及布置优化[J]. 动力工程学报, 2015, 35(6): 501-508.
YU G, LUO N, HOU H J, et al.Velocity and layout optimization of parabolic trough solar systems[J]. Journal of Chinese Society of Power Engineering, 2015,35(6): 501-508.
[12] BAVA F, DRAGSTED J, FURBO S.A numerical model to evaluate the flow distribution in a large solar collector field[J]. Solar energy, 2017, 143: 31-42.
[13] MA L R, WANG Z F, LEI D Q, et al.Establishment, validation, and application of a comprehensive thermal hydraulic model for a parabolic trough solar field[J]. Energies, 2019, 12(16): 3161.
[14] MA L R, ZHANG T, ZHANG X L, et al.Optimization of parabolic trough solar power plant operations with nonuniform and degraded collectors[J]. Solar energy, 2021,214: 551-564.
[15] ABUTAYEH M, ALAZZAM A, EL-KHASAWNEH B.Balancing heat transfer fluid flow in solar fields[J]. Solar energy, 2014, 105: 381-389.
[16] 王云. 平衡阀在供暖空调系统中应用的实验研究[D]. 邯郸: 河北工程大学, 2016.
WANG Y.Test study on balancing valve used in heating and air conditioning system[D]. Handan: Hebei University of Engineering, 2016.
[17] AL-MALIKI W A K, ALOBAID F, KEZ V, et al. Modelling and dynamic simulation of a parabolic trough power plant[J]. Journal of process control, 2016,39: 123-138.
[18] BURKHOLDER F, KUTSCHER C. Heat loss testing of Schott’s2008 PTR70 parabolic trough receiver[R]. NREL/TP-550-45633, 2009.
[19] LI M Y, CHU Y H, PEDRO H T C, et al. Quantitative evaluation of the impact of cloud transmittance and cloud velocity on the accuracy of short-term DNI forecasts[J]. Renewable energy, 2016, 86: 1362-1371.