双模式分解CNN-LSTM集成的短期风速预测模型

毕贵红, 赵鑫, 李璐, 陈仕龙, 陈臣鹏

太阳能学报 ›› 2023, Vol. 44 ›› Issue (3) : 191-197.

PDF(2196 KB)
欢迎访问《太阳能学报》官方网站,今天是
PDF(2196 KB)
太阳能学报 ›› 2023, Vol. 44 ›› Issue (3) : 191-197. DOI: 10.19912/j.0254-0096.tynxb.2021-1307

双模式分解CNN-LSTM集成的短期风速预测模型

  • 毕贵红, 赵鑫, 李璐, 陈仕龙, 陈臣鹏
作者信息 +

DUAL-MODE DECOMPOSITION CNN-LSTM INTEGRATED SHORT-TERM WIND SPEED FORECASTING MODEL

  • Bi Guihong, Zhao Xin, Li Lu, Chen Shilong, Chen Chenpeng
Author information +
文章历史 +

摘要

为提高短期风速的预测精度,提出一种基于双模式分解、双通道卷积神经网络(CNN)和长短期记忆神经网络(LSTM)的组合预测模型以提高预测精度。首先,对经过PAM方法聚类后的风速时间序列利用奇异谱分解(SSD)和变分模态分解(VMD)2种信号分解方法进行分解,获得2类多尺度分量。不同模式的多尺度分量可降低原始风速的复杂度和非平稳性,实现不同模式模态分量规律的互补;其次,将2种分解方法得到的风速子序列合并为一个矩阵,输入到双通道CNN进行波形特征深度提取;最后,采用LSTM建立历史风速时序的时间依赖关系,在时空相关性分析的基础上得到最终风速预测结果。实验结果表明,基于双模式分解-双通道CNN-LSTM的组合预测模型可有效提高风速短期预测的精度。

Abstract

This paper proposes a short-term wind power combination forecasting method based on two-mode decomposition,two-channel convolutional neural network (CNN) and long short-term memory neural network (LSTM) to improve the forecasting accuracy. Firstly, the wind speed time series clustered by the PAM method is decomposed into two modes of multi-scale subsequences by the singular spectral decomposition (SSD) and variational mode decomposition (VMD). The multi-scale subsequences of different modes can reduce the complexity and nonstationay of the original wind speed,and achieve the complementarity of the two modes.Secondly,the wind speed subsequences obtained by the two decomposition methods are combined into a matrix,which is input to the dual-channel CNN for waveform feature depth extraction. Finally,LSTM network is used to establish the historical wind speed time series dependency relationship,and the final wind speed prediction result is obtained on the basis of spatiotemporal correlation analysis. Experiment results show that the combined prediction model based on dual mode decomposition-dual channel CNN-LSTM can effectively improve the accuracy of short-term wind speed forecasting.

关键词

风力发电 / 深度学习 / 卷积神经网络 / 长短期记忆网络 / 奇异谱分解 / 变分模态分解 / 风速预测

Key words

wind power / deep learning / convolutional neural networks / long short-term memory / singular spectrum decomposition / variational mode decomposition / wind speed forecasting

引用本文

导出引用
毕贵红, 赵鑫, 李璐, 陈仕龙, 陈臣鹏. 双模式分解CNN-LSTM集成的短期风速预测模型[J]. 太阳能学报. 2023, 44(3): 191-197 https://doi.org/10.19912/j.0254-0096.tynxb.2021-1307
Bi Guihong, Zhao Xin, Li Lu, Chen Shilong, Chen Chenpeng. DUAL-MODE DECOMPOSITION CNN-LSTM INTEGRATED SHORT-TERM WIND SPEED FORECASTING MODEL[J]. Acta Energiae Solaris Sinica. 2023, 44(3): 191-197 https://doi.org/10.19912/j.0254-0096.tynxb.2021-1307
中图分类号: TM614   

参考文献

[1] 王伟胜, 王铮, 董存, 等. 中国短期风电功率预测技术现状与误差分析[J]. 电力系统自动化, 2021, 45(1): 17-27.
WANG W S, WANG Z, DONG C, et al.Status and error analysis of short-term forecasting technology of wind power in China[J]. Automation of electric power systems, 2021, 45(1): 7-27.
[2] 高桂革, 原阔, 曾宪文, 等. 基于改进CEEMD-CS-ELM的短期风速预测[J]. 太阳能学报, 2021, 42(7): 284-289.
GAO G G, YUAN K, ZENG X W, et al.Short-term wind speed prediction based on improved CEEMD-CS-ELM[J]. Acta energiae solaris sinica, 2021, 42(7): 284-289.
[3] 林涛, 刘航鹏, 赵参参, 等. 基于SSA-PSO-ANFIS的短期风速预测研究[J]. 太阳能学报, 2021, 42(3): 128-134.
LIN T, LIU H P, ZHAO C C, et al.Short-term wind speed prediction based on SSA-PSO-ANFIS[J]. Acta energiae solaris sinica, 2021, 42(3): 128-134.
[4] 王俊, 李霞, 周昔东, 等. 基于VMD和LSTM的超短期风速预测[J]. 电力系统保护与控制, 2020, 48(11): 45-52.
WANG J, LI X, ZHOU X D, et al.Ultra-short-term wind speed prediction based on VMD-LSTM[J]. Power system protection and control, 2020, 48(11): 45-52.
[5] 殷豪, 欧祖宏, 陈德, 等. 基于二次模式分解和级联式深度学习的超短期风电功率预测[J]. 电网技术, 2020, 44(2): 445-453.
YIN H, OU Z H, CHEN D, et al.Ultra-short-term wind power prediction based on two-layer mode decomposition and cascaded deep learning[J]. Power system technology, 2020, 44(2): 445-453.
[6] 赵冬梅, 杜刚, 刘鑫, 等. 基于时序分解及机器学习的风电功率组合预测模型[J]. 现代电力, 2022, 39(1): 9-18.
ZHAO D M, DU G, LIU X, et al.Wind power combination prediction model based on time series decomposition and machine learning[J]. Modern electric power, 2022, 39(1): 9-18.
[7] DU W H,ZHOU J, WANG Z J, et al.Applicationof improved singular spectrum decomposition methofor composite fault diagnosis of gear boxes[J]. Sensors, 2018,18(11): 1-29.
[8] 史加荣, 赵丹梦, 王琳华, 等. 基于RR-VMD-LSTM的短期风电功率预测[J]. 电力系统保护与控制, 2021, 49(21): 63-70.
SHI J R, ZHAO D M, WANG L H, et al.Short-term wind power prediction based on RR-VMD-LSTM[J]. Power system protection and control, 2021, 49(21): 63-70.
[9] 许子非, 金江涛, 李春. 基于多尺度卷积神经网络的滚动轴承故障诊断方法[J]. 振动与冲击, 2021, 40(18): 212-220.
XU Z F, JIN J T, LI C.New method for the fault diagnosis of rolling bearings based on a multiscale convolutional neural network[J]. Journal of vibration and shock, 2021, 40(18): 212-220.
[10] 张凯, 林谷烨, 罗权. 改进LSTM神经网络在电机故障诊断的应用[J]. 计算机测量与控制, 2021, 29(4): 45-50.
ZHANG K, LIN G Y, LUO Q.Application of improved LSTM neural network in motor fault diagnosis[J]. Computer measurement and control, 2021, 29(4): 45-50.
[11] ZHI M, GUO F, HE G Y, et al.Milling tool wear state recognition based on partitioning around medoids (PAM) clustering[J]. International journal of advanced manufacturing technology, 2017, 88(5-8): 1203-1213.
[12] 邹臣嵩, 段桂芹. 基于改进K-medoids的聚类质量评价指标研究[J]. 计算机系统应用, 2019, 28(6): 235-242.
ZOU C S, DUAN G Q.Cluster quality evaluation index based on K-medoids algorithm[J]. Computer systems and applications, 2019, 28(6): 235-242.
[13] 王晓龙, 唐贵基, 何玉灵, 等. 变转速工况下基于改进奇异谱分解和1.5维包络阶次谱的风电机组轴承损伤识别[J]. 太阳能学报, 2021, 42(1): 240-247.
WANG X L, TANG G J, HE Y L, et al.Injury identification of wind turbine bearing based on ISSD and 1.5 dimension envelope order spectrum under variable rotating speed condition[J]. Acta energiae solaris sinica, 2021, 42(1): 240-247.
[14] 向玲, 邓泽奇, 赵玥. 基于LPF-VMD和KELM的风速多步预测模型[J]. 电网技术, 2019, 43(12): 4461-4467.
XIANG L, DENG Z Q, ZHAO Y.Multi-step wind speed prediction model based on LPF-VMD and KELM[J]. Power system technology, 2019, 43(12): 4461-4467.
[15] 向玲, 邓泽奇. 基于改进经验小波变换和最小二乘支持向量机的短期风速预测[J]. 太阳能学报, 2021, 42(2): 97-103.
XIANG L, DENG Z Q.Short-term wind speed forecasting based on improved empirical wavelet transformand least squares support vector machines[J]. Acta energiae solaris sinica, 2021, 42(2): 97-103.
[16] NESHAT M, NEZHAD M M, ABBASNEJAD E, er al. A deep learning-based evolutionary model for short-term wind speed forecasting: a case study of the Lillgrund offshore wind farm[J]. Energy conversion and management, 2021, 236: 114002.

PDF(2196 KB)

Accesses

Citation

Detail

段落导航
相关文章

/