农业光伏互补开发与盈利模式研究

魏雯婧, 罗久富, 杨路培, 桑亚博, 罗小林, 隋欣

太阳能学报 ›› 2023, Vol. 44 ›› Issue (3) : 457-464.

PDF(1759 KB)
欢迎访问《太阳能学报》官方网站,今天是
PDF(1759 KB)
太阳能学报 ›› 2023, Vol. 44 ›› Issue (3) : 457-464. DOI: 10.19912/j.0254-0096.tynxb.2021-1310

农业光伏互补开发与盈利模式研究

  • 魏雯婧1, 罗久富2,3, 杨路培4, 桑亚博4, 罗小林2,3, 隋欣2,3
作者信息 +

COMBINING DEVELOPMENT AND PROFIT MODEL OF AGRIVOLTAICS:A PRELIMINARY STUDY

  • Wei Wenjing1, Luo Jiufu2,3, Yang Lupei4, Sang Yabo4, Luo Xiaolin2,3, Sui Xin2,3
Author information +
文章历史 +

摘要

该文在梳理国内外已有大型光伏电站对组件下作物产量、品质、生长发育、生理代谢影响的基础上,基于光伏产业要素、农业多功能性理论和高新农业技术研发,创新提出3种农业光伏互补开发模式;基于产业经济学微笑曲线理论,从农业生产上、中、下游角度提出农业光伏盈利模式;并开展湖北蕲卓蕲州农业光伏项目案例研究,结果表明采用光伏+农业生产互补开发和中游盈利模式,可实现项目自有资金内部收益率提高1.36%~1.70%。研究成果可为推动农业光伏互补开发,明晰项目盈利模式,实现行业提质增效提供科技支撑。

Abstract

This study summarizes the results of large-scale photovoltaic power plants on the yield, quality, growth, and physiological metabolism of under-panel crops. Furthermore, three integrated developing models are put forward according to the photovoltaic industrial elements, the agricultural multifunctionality theory, and recent high-tech agricultural technologies. In addition, three profit models of agrivoltaic, coupling with the upper, middle and lower reaches of agricultural industry based on the smile curve theory, are also proposed. Finally, a case study of Qizhuoqizhou in Hubei province is carried out, and results show that it could achieve an increase in the internal rate of return of the project’s own funds by 1.36% to 1.70% under complementary development of combining solar energy with farming, as well as middle reaches profit model. These results will give useful information to push Chinese agrivoltaic development, and also to optimize profit model design for agrivoltaic systems that maintain crop production, produce renewable energy and increase farm profitability.

关键词

农业 / 光伏 / 产业经济学 / 互补开发 / 盈利模式 / 微笑曲线 / 蕲卓蕲州案例

Key words

agriculture / photovoltaic / industrial economics / complementary development / profit model / smile curve / Qizhuoqizhou case study

引用本文

导出引用
魏雯婧, 罗久富, 杨路培, 桑亚博, 罗小林, 隋欣. 农业光伏互补开发与盈利模式研究[J]. 太阳能学报. 2023, 44(3): 457-464 https://doi.org/10.19912/j.0254-0096.tynxb.2021-1310
Wei Wenjing, Luo Jiufu, Yang Lupei, Sang Yabo, Luo Xiaolin, Sui Xin. COMBINING DEVELOPMENT AND PROFIT MODEL OF AGRIVOLTAICS:A PRELIMINARY STUDY[J]. Acta Energiae Solaris Sinica. 2023, 44(3): 457-464 https://doi.org/10.19912/j.0254-0096.tynxb.2021-1310
中图分类号: TM615   

参考文献

[1] WESELEK A, EHMANN A, ZIKELI S, et al.Agrophotovoltaic systems: applications, challenges, and opportunities. a review[J]. Agronomy for sustainable development, 2019, 39: 1-20.
[2] 袁全红. “一带一路”给中国光伏产业带来的机遇与挑战[J]. 太阳能, 2020(8): 10-13.
YUAN Q H.Opportunities and challenges for China’s PV industry brought by “the belt and road initiatives”[J]. Solar energy, 2020(8): 10-13.
[3] PASCARIS A S, SCHELLY C, PEARCE J M.A first investigation of agriculture sector perspectives on the opportunities and barriers for agrivoltaics[J]. Agronomy, 2020, 10(12): 1885.
[4] CHOI C S, CAGLE A E, MACKNICK J, et al.Effects of revegetation on soil physical and chemical properties in solar photovoltaic infrastructure[J]. Frontiers in environmental science, 2020, 8: 140.
[5] GRAHAM M, ATES S, MELATHOPOULOS A P, et al.Partial shading by solar panels delays bloom, increases floral abundance during the late-season for pollinators in a dryland, agrivoltaic ecosystem[J]. Scientific reports, 2021, 11: 7452.
[6] 赵延岩, 李振朝, 高晓清, 等. 戈壁大型光伏电站夏季晴天地表通量特征[J]. 太阳能学报, 2021, 42(5): 138-144.
ZHAO Y Y, LI Z C, GAO X Q, et al.Surface flux characteristics of large-scale photovoltaic power station in Gobi on sunny days in summer[J]. Acta energiae solaris sinica, 2021, 42(5): 138-144.
[7] CHO J, PARK S M, PARK A R, et al.Application of photovoltaic systems for agriculture: a study on the relationship between power generation and farming for the improvement of photovoltaic applications in agriculture[J]. Energies, 2020, 13(18): 4815.
[8] 田介花, 王小睿, 陆炜. 光伏支架对油用牡丹生长特性影响的研究[J]. 太阳能, 2021(11): 48-54.
TIAN J H, WANG X R, LU W.Study on influence of PV support on growth characteristics of oil peonies[J]. Solar energy, 2021(11): 48-54.
[9] ZHANG H M, XU Z D, SUN C W, et al.Targeted poverty alleviation using photovoltaic power: review of Chinese policies[J]. Energy policy, 2018, 120: 550-558.
[10] 袁合涛. 基于西北贫困区的热伏耦合型苦咸水淡化装置研究[J]. 太阳能学报, 2018, 39(10): 2721-2727.
YUAN H T.Study on brackish water desalination device of solar thermal and photovoltaic coupling based on poverty area in northwest China[J]. Acta energiae solaris sinica, 2018, 39(10): 2721-2727.
[11] ELAMRI Y, CHEVIRON B, LOPEZ J M, et al.Water budget and crop modelling for agrivoltaic systems: application to irrigated lettuces[J]. Agricultural water management, 2018, 208: 440-453.
[12] BARRON-GAFFORD G A, PAVAO-ZUCKERMAN M A, MINOR R L, et al. Agrivoltaics provide mutual benefits across the food-energy-water nexus in drylands[J]. Nature sustainability, 2019, 2: 848-855.
[13] 通旭芳, 汪季, 蒙仲举, 等. 光伏电板下沙打旺叶片性状及其养分差异研究[J]. 中国农业科技导报, 2020, 22(8): 168-177.
TONG X F, WANG J, MENG Z J, et al.Research on leaf characters and nutrient differences of Astragalus adsurgens under photovoltaic panel[J]. Journal of agricultural science and technology, 2020, 22(8): 168-177.
[14] ADEH E H, SELKER J S, HIGGINS C W.Remarkable agrivoltaic influence on soil moisture, micrometeorology and water-use efficiency[J]. Plos one, 2018, 13(11): e0203256.
[15] Al-AGELE H A, PROCTOR K, MURTHY G, et al. A case study of tomato (Solanum lycopersicon var. Legend ) production and water productivity in agrivoltaic systems[J]. Sustainability, 2021, 13(5): 2850.
[16] VALLE B, SIMONNEAU T, SOURD F, et al.Increasing the total productivity of a land by combining mobile photovoltaic panels and food crops[J]. Applied energy, 2017, 206: 1495-1507.
[17] HOMMA M, DOI T, YOSHIDA Y. A field experiment and the simulation on agrivoltaic-systems regarding to rice in a paddy field[J]. Journal of Japan Society of Energy and Resources, 2016, 37(6): 23-31.
[18] LÓPEZ-DÍAZ G, CARREO-ORTEGA A, FATNASSI H, et al. The effect of different levels of shading in a photovoltaic greenhouse with a north-south orientation[J]. Applied sciences, 2020, 10(3): 882.
[19] TANG Y L, MA X, LI M, et al.The effect of temperature and light on strawberry production in a solar greenhouse[J]. Solar energy, 2020, 195: 318-328.
[20] LIU W, LIU L Q, GUAN C G, et al.A novel agricultural photovoltaic system based on solar spectrum separation[J]. Solar energy, 2018, 162: 84-94.
[21] THOMPSON E P, BOMBELLI E L, SHUBHAM S, et al.Tinted semi-transparent solar panels allow concurrent production of crops and electricity on the same cropland[J]. Advanced energy materials, 2020, 10(35): 2001189.
[22] WESELEK A, BAUERLE A, ZIKELI S, et al.Effects on crop development, yields and chemical composition of celeriac (Apium graveolens L. var. rapaceum) cultivated underneath an agrivoltaic system[J]. Agronomy, 2021, 11(4): 733.
[23] SEIDLOVA L, VERLINDEN M, GLOSER J, et al.Which plant traits promote growth in the low-light regimes of vegetation gaps?[J]. Plant ecology, 2009, 200(2): 303-318.
[24] DINESH H, PEARCE J M.The potential of agrivoltaic systems[J]. Renewable and sustainable energy reviews, 2016, 54: 299-308.
[25] 沈道军, 盛春, 杨松, 等. 林农光伏电站实例分析[J]. 太阳能, 2016(2): 32-34, 11.
SHEN D J, SHENG C, YANG S, et al.Case analysis of agroforestry photovoltaic power station[J]. Solar energy, 2016(2): 32-34, 11.
[26] 吴颖超. 积尘对光伏电站发电量的影响及清洁方式分析[J]. 太阳能, 2021(9): 47-51.
WU Y C.Influence of dust accumulation on power generation of PV power station and analysis of cleaning methods[J]. Solar energy, 2021(9): 47-51.
[27] TOLEDO C, SCOGNAMIGLIO A.Agrivoltaic systems design and assessment: a critical review, and a descriptive model towards a sustainable landscape vision (three-dimensional agrivoltaic patterns)[J]. Sustainability, 2021, 13(12): 6871.
[28] 姚仲敏, 潘飞, 谭东悦. 新型光伏发电智能追光系统设计[J]. 太阳能学报, 2016, 37(5): 1174-1179.
YAO Z M, PAN F, TAN D Y.The new design of photovoltaic intelligent sun-track system[J]. Acta energiae solaris sinica, 2016, 37(5): 1174-1179.
[29] DUPRAZ C, MARROU H, TALBOT G, et al.Combining solar photovoltaic panels and food crops for optimising land use: towards new agrivoltaic schemes[J]. Renewable energy, 2011, 36(10): 2725-2732.
[30] 佟建波. 新型薄膜式光伏农业大棚在广西壮族自治区应用的可行性研究[J]. 太阳能, 2021(4): 70-73.
TONG J B.Feasibility study on application of new thin-film PV agricultural greenhouse in Guangxi Zhuang Autonomous region[J]. Solar energy, 2021(4): 70-73.
[31] 成珂, 马晓瑶, 孙琦琦. 光伏温室大棚组件布置CFD模拟研究[J]. 太阳能学报, 2021, 42(8): 159-165.
CHENG K, MA X Y, SUN Q Q.CFD simulation study on module layout of photovoltaic greenhouse[J]. Acta energiae solaris sinica, 2021, 42(8): 159-165.
[32] 王泽国, 王磊, 吉春明. 农业大棚光伏结构体系的优化设计研究[J]. 太阳能, 2018(12): 65-67,74.
WANG Z G, WANG L, JI C M.Study on optimization design of photovoltaic structure system in agricultural greenhouse[J]. Solar energy, 2018(12): 65-67,74.
[33] 王进, 肖振兴, 梁甜. 农业灌溉光伏水跟踪发电系统的初步研究[J]. 太阳能, 2020(7): 89-92.
WANG J, XIAO Z X, LIANG T.Research on solar power water-tracking generation system for irrigation[J]. Solar energy, 2020(7): 89-92.
[34] LI C S, WANG H Y, MIAO H, et al.The economic and social performance of integrated photovoltaic and agricultural greenhouses systems: case study in China[J]. Applied energy, 2017, 190: 204-212.
[35] CUPPARI R I, HIGGINS C W, CHARACKLIS G W.Agrivoltaics and weather risk: a diversification strategy for landowners[J]. Applied energy, 2021, 291: 116809.
[36] MALU P R,SHARMA U S, PEARCE J M.Agrivoltaic potential on grape farms in India[J]. Sustainable energy technologies and assessments, 2017, 23: 104-110.
[37] SCHINDELE S, TROMMSDORFF M, SCHLAAK A, et al.Implementation of agrophotovoltaics: techno-economic analysis of the price-performance ratio and its policy implications[J]. Applied energy, 2020, 265: 114737.
[38] 谢小蓉. 国内外农业多功能性研究文献综述[J]. 广东农业科学, 2011, 38(21): 209-213.
XIE X R.Summary of viewpoints in domestic and oversea research about agricultural multi-functionality[J]. Guangdong agricultural sciences, 2011, 38(21): 209-213.
[39] 黄义乔, 刘晶茹, 王效华. 基于Agent的农工复合型生态产业园的建模与仿真[J]. 生态与农村环境学报, 2015, 31(3): 301-307.
HUANG Y Q, LIU J R, WANG X H.Agent-based modeling and simulation of agro-industrial compound eco-industrial park[J]. Journal of ecology and rural environment, 2015, 31(3): 301-307.
[40] 彭建, 刘志聪, 刘焱序. 农业多功能性评价研究进展[J]. 中国农业资源与区划, 2014, 35(6): 1-8.
PENG J, LIU Z C, LIU Y X.Research progress on assessing multi-functionality of agriculture[J]. Chinese journal of agricultural resources and regional planning, 2014, 35(6): 1-8.
[41] 张耀文, 赵小光, 关周博, 等. 作物高光效种质筛选的研究进展[J]. 中国农学通报, 2019, 35(18): 1-11.
ZHANG Y W, ZHAO X G, GUAN Z B, et al.The review on screening crop germplasm resources with high photosynthetic efficiency[J]. Chinese agricultural science bulletin, 2019, 35(18): 1-11.
[42] SINGH V K, DWIVEDI B S, TIWARI K N, et al.Optimizing nutrient management strategies for rice-wheat system in the Indo-Gangetic Plains of India and adjacent region for higher productivity, nutrient use efficiency and profits[J]. Field crops research, 2014, 164: 30-44.
[43] 米国华. 论作物养分效率及其遗传改良[J]. 植物营养与肥料学报, 2017, 23(6): 1525-1535.
MI G H.Nutrient use efficiency in crops and its genetic improvement[J]. Journal of plant nutrition and fertilizers, 2017, 23(6): 1525-1535.
[44] 付浩然, 李婷玉, 曹寒冰, 等. 我国化肥减量增效的驱动因素探究[J]. 植物营养与肥料学报, 2020, 26(3): 561-580.
FU H R, LI T Y, CAO H B, et al.Research on the driving factors of fertilizer reduction in China[J]. Journal of plant nutrition and fertilizers, 2020, 26(3): 561-580.
[45] LAFFONT J J.Political economy, information and incentives[J]. European economic review, 1999, 43(4-6): 649-669.
[46] 李英, 赵越, 潘鹤思. 技术创新、 制度创新与产业演化关系研究综述[J]. 科技进步与对策, 2016, 33(24): 154-160.
LI Y, ZHAO Y, PAN H S.A survey of the relations of technological innovation, institutional innovation and industrial evolution[J]. Science & technology progress and policy, 2016, 33(24): 154-160.
[47] 吕乃基, 兰霞. 微笑曲线的知识论释义[J]. 东南大学学报(哲学社会科学版), 2010, 12(3): 18-22,126.
LYU N J, LAN X.An epistemological annotation of smiling curve[J]. Journal of Southeast University(philosophy and social science), 2010, 12(3): 18-22,126.
[48] SÖTLLINGER R. Testing the smile curve: functional specialisation and value creation in GVCs[J]. Structural change and economic dynamics, 2021, 56: 93-116.
[49] DB42/T 925—2021, 中药材蕲艾生产技术规程[S].
DB42/T 925—2021, Chinese medicinal materials-code of practice for production of Artemisiae argyi folium in Qichun[S].
[50] 康婷, 穆月英. 产销信息不对称对农户过量施肥行为的影响[J]. 西北农林科技大学学报(社会科学版), 2020, 20(2): 111-119.
KANG T, MU Y Y.Asymmetry of production and marketing information and farmers’behavior of fertilizer overuse[J]. Journal of Northwest A&F University(social science edition), 2020, 20(2): 111-119.
[51] 柯利, 张旭辉. 新县艾草产业发展现状、存在问题及建议[J]. 河南农业, 2018(16): 16-17.
KE L, ZHANG X H.The current situation, problems and suggestions of Artemisia argyi industry development in Xinxian County[J]. Agriculture of He’nan, 2018(16): 16-17.

基金

技术咨询项目(SS0203A192021); 中国水利水电科学研究院成果转化金专项(SS1003A032020); 技术服务项目(SS0203A312021); 中国科学院学部咨询评议项目(2021-JS01-B-011)

PDF(1759 KB)

Accesses

Citation

Detail

段落导航
相关文章

/