基于VMD-SSA-LSSVM的短期风电预测

王维高, 魏云冰, 滕旭东

太阳能学报 ›› 2023, Vol. 44 ›› Issue (3) : 204-211.

PDF(1789 KB)
欢迎访问《太阳能学报》官方网站,今天是
PDF(1789 KB)
太阳能学报 ›› 2023, Vol. 44 ›› Issue (3) : 204-211. DOI: 10.19912/j.0254-0096.tynxb.2021-1314

基于VMD-SSA-LSSVM的短期风电预测

  • 王维高, 魏云冰, 滕旭东
作者信息 +

SHORT-TERM WIND POWER FORECASTING BASED ONVMD-SSA-LSSVM

  • Wang Weigao, Wei Yunbing, Teng Xudong
Author information +
文章历史 +

摘要

为解决由于风电预测中出现的波动性和随机性造成风电功率预测精确度不高的问题,提出一种基于变分模态分解(variational mode decomposition,VMD)、Tent混沌映射、随机游走的麻雀搜索优化算法(sparrow search algorithm,SSA)和最小二乘支持向量机(least squares support vector machines,LSSVM)的组合模型。首先应用鲸鱼优化算法(whales optimization algorithm,WOA)对VMD的核心参数(K值和惩罚系数α)进行自动寻优。经过WOA-VMD对原始风电功率时间序列分解过后,引入改进的麻雀搜索算法SSA优化最小二乘支持向量机LSSVM中的学习参数,然后对分解得到的各个子序列建立SSA-LSSVM预测模型;最后叠加各个子序列的预测值并得到最终预测值。经实验仿真对比,该文组合模型较现有单一预测模型和普通组合模型在预测精度上有较大提高。

Abstract

In order to solve the problem of low accuracy of wind power prediction caused by the volatility and randomness in wind power prediction, an integrated model combined with the least squares support vector machine (LSSVM) and an sparrow search algorithm based on variational mode decomposition (VMD). Tent chaotic mapping and random walkis proposed. First, the whale optimization algorithm (WOA) is used to automatically optimize the core parameters (K value and penalty coefficient α) of VMD. After original wind power time series is decomposed by WOA-VMD, the improved sparrow search algorithm SSA is introduced to optimize the learning parameters of LSSVM, and then the SSA-LSSVM prediction model is established for each subsequence obtained by the decomposition. Finally, the prediction value of each subsequence is superimposed to get the final predicted value. Compared with the existing single prediction models and the general integrated models in simulation experiment, the proposed integrated model has a great improvement in the prediction accuracy.

关键词

自适应算法 / 风电功率 / 预测模型分析 / 最小二乘支持向量机 / 变分模态分解

Key words

adaptive algorithms / wind power / predictive analysis / least squares support vector machines / variational mode decomposition

引用本文

导出引用
王维高, 魏云冰, 滕旭东. 基于VMD-SSA-LSSVM的短期风电预测[J]. 太阳能学报. 2023, 44(3): 204-211 https://doi.org/10.19912/j.0254-0096.tynxb.2021-1314
Wang Weigao, Wei Yunbing, Teng Xudong. SHORT-TERM WIND POWER FORECASTING BASED ONVMD-SSA-LSSVM[J]. Acta Energiae Solaris Sinica. 2023, 44(3): 204-211 https://doi.org/10.19912/j.0254-0096.tynxb.2021-1314
中图分类号: TP301.6   

参考文献

[1] 吴小珊, 张步涵, 袁小明, 等. 求解含风电场的电力系统机组组合问题的改进量子离散粒子群优化方法[J].中国电机工程学报, 2013, 33(4): 45-52.
WU X S, ZHANG B H, YUAN X M, et al.Solutions to unit commitment problems in power systems with wind farms using advanced quantum-inspired binary PSO[J]. Proceedings of the CSEE, 2013, 33(4): 45-52.
[2] 杨子民, 彭小圣, 郎建勋, 等. 基于集群动态划分与BLSTM深度学习的风电集群短期功率预测[J]. 高电压技术, 2021, 47(4): 1195-1203.
YANG Z M, PENG X S, LANG J X, et al.Short-term wind power prediction based on dynamic cluster division and BLSM deep learning method[J]. High voltage engineering, 2021, 47(4): 1195-1203.
[3] 冯双磊, 王伟胜, 刘纯, 等. 基于物理原理的风电场短期风速预测研究[J]. 太阳能学报,2011, 32(5): 611-616.
FENG S L, WANG W S, LIU C, et al.Short termwind speed prediction based on physical principle[J]. Acta energiae solaris sinica, 2011, 32(5): 611-616.
[4] 曹俊波, 周任军, 邓学华, 等. 考虑优化ARIMA模型差分次数的风功率预测[J]. 电力系统及其自动化学报,2019, 31(1): 105-111.
CAO J B, ZHOU R J, DENG X H, et al.Wind power forecast considering differential times of optimal ARIMA model[J]. Proceedings of the CSU-EPSA, 2019, 31(1):105-111.
[5] 孙斌, 姚海涛, 刘婷. 基于高斯过程回归的短期风速预测[J]. 中国电机工程学报, 2012, 32(29): 104-109.
SUN B, YAO H T, LIU T.Short-term wind speed forecasting based on gaussian process regression model[J]. Proceedings of the CSEE, 2012, 32(29): 104-109.
[6] 王兰, 王晞, 李华强, 等. 基于相空间重构和误差补偿的风电功率混沌时间序列预测模型[J]. 电力系统及其自动化学报, 2017, 29(9): 65-69.
WANG L, WANG X, LI H Q, et al.Chaotic time series prediction model of wind power based on phase space reconstruction and error correction[J]. Proceedings of the CSU-EPSA, 2017, 29(9): 65-69.
[7] 叶瑞丽, 郭志忠, 刘瑞叶, 等. 基于小波包分解和改进Elman神经网络的风电场风速和风电功率预测[J]. 电工技术学报, 2017, 32(21): 103-111.
YE R L, GUO Z Z, LIU R Y, et al.Wind speed and wind power forecasting method based on waveletpacket decomposition and improved Elman neural network[J]. Transactions of China Electrotechnical Society, 2017, 32(21): 103-111.
[8] 王守相, 王亚旻, 刘岩, 等. 基于经验模态分解和ELM神经网络的逐时太阳能辐照量预测[J]. 电力自动化设备, 2014, 34(8): 7-12.
WANG S X, WANG Y M, LIU Y, et al.Hourly solar radiation forecasting based on EMD and ELM neural network[J]. Electric power automation equipment, 2014, 34(8):7-12.
[9] 耿鸿冲, 张越师. 基于GA-SVM的风机发电功率预测[J]. 电子测试, 2019(12): 38-40.
GENG H C, ZHANG Y S.Predicton of wind turbine power generation based on GA-SVM[J]. Electronic test, 2019, (12): 38-40.
[10] 徐炜君. 基于灰狼优化SVR的风电场功率超短期预测[J]. 杭州师范大学学报(自然科学版), 2021, 20(2):177-182.
XU W J.Ultra short term wind power forecasting of wind farm based on grey wolf optimized SVR[J]. Journal of Hangzhou Normal University(natural science edition), 2021, 20(2): 177-182.
[11] 陈道君, 龚庆武, 金朝意, 等. 基于自适应扰动量子粒子群算法参数优化的支持向量回归机短期风电功率预测[J]. 电网技术, 2013, 37(4): 974-980.
CHEN D J, GONG Q W, JIN Z Y, et al.Short-term wind power prediction based on support vector regression machine optimized by adaptive disturbance quantum-behaved particle swarm optimization[J]. Power system technology, 2013, 37(4): 974-980.
[12] 周斌, 文亮, 杨力, 等. BP神经网络在风电功率预测中的应用[J]. 宜宾学院学报, 2012, 12(6): 30-32.
ZHOU B, WEN L, YANG L, et al.BP neural network in wind power prediction[J]. Journal of Yibin University, 2012, 12(6): 30-32.
[13] 何廷一, 田鑫萃, 李胜男, 等. 基于蜂群算法改进的BP神经网络风电功率预测[J]. 电力科学与技术学报,2018, 33(4): 22-28.
HE T Y, TIAN X C, LI S N, et al.Improved BP neural network based on artifical bee colony algorithm for wind power prediction[J]. Journal of electric power science and technology, 2018, 33(4): 22-28.
[14] DRAGOMIRETSKIY K,ZOSSO D.Variational mode decomposition[J]. IEEE transactions on signal processing,2014, 62(3): 531-544.
[15] MIRJALILI S, LEWIS A.The whale optimization algorithm[J]. Advances in engineering software, 2016, 95: 51-67.
[16] 刘长良, 武英杰, 甄成刚. 基于变分模态分解和模糊C均值聚类的滚动轴承故障诊断[J]. 中国电机工程学报,2015, 35(13): 3358-3365.
LIU C L, WU Y J, ZHEN C G.Rolling bearing fault diagnosis based on cariational model decomposition and fuzzy C means clustering[J]. Proceedings of the CSEE, 2015, 35(13): 3358-3365.
[17] 薛建凯. 一种新型的群智能优化技术的研究与应用[D].上海: 东华大学, 2020.
XUE J K.Research and application of a novel swarm intelligence optimization technique: sparrow search algorithm[D]. Shanghai: Donghua University, 2020.
[18] 杨锡运, 孙宝君, 张新房, 等. 基于相似数据的支持向量机短期风速预测仿真研究[J]. 中国电机工程学报,2012, 32(4): 35-41.
YANG X Y, SUN B J, ZHANG X F, et al.Short-term wind speed forecasting based on support vector machine with similar data[J]. Proceedings of the CSEE, 2012, 32(4):35-41.
[19] 张晓鹏, 张兴忠. 基于高斯核函数的支持向量机光伏故障诊断研究[J]. 可再生能源, 2021, 39(6): 760-765.
ZHANG X P, ZHANG X Z.Research on photovoltaic fault diagnosis based on time domain characteristics[J]. Renewable energy resources, 2021, 39(6): 760-765.

基金

国家自然科学基金(51507157)

PDF(1789 KB)

Accesses

Citation

Detail

段落导航
相关文章

/