以新型变桨距风力机为研究对象,针对其独特的变桨调节机构,通过风洞试验的方法,采用IMC载荷测试系统,对其关键部件进行载荷测试。试验结果显示:随着桨距角增大,叶根所受弯矩降低,但叶根挥舞弯矩较摆振弯矩减小更明显;塔筒俯仰方向的受力大于侧弯方向,当风轮转速约为243.5 r/min时,塔筒侧弯受力出现突增;不同桨距角下,变桨调节机构的齿条与齿条同步盘测点载荷大小随风速变化趋势一致,但随着桨距角的增加,表现为先增加后减小再增加的趋势。
Abstract
Taking the new variable pitch wind turbine as the research object, aiming at its unique variable pitch regulating mechanism, through the wind tunnel test method, the IMC load test system was used to carry out the load test on its key components. The test results show that with the increase of pitch angle, the bending moment of blade root decreases, but the reduction effect of axial bending moment is more obvious than that of circumferential bending. The force in the pitching direction is greater than that in the lateral bending direction, and when the wind wheel speed is about 243.5 r/min, the lateral bending force of the tower increases suddenly. Under different pitch angles, the load of measuring points on the rack and rack synchronous disk of the variable pitch regulating mechanism has the same trend with the wind speed, but with the increase of pitch angle, it increases first, then decreases and finally increases.
关键词
风力机 /
载荷 /
变桨距角 /
关键部件 /
IMC载荷测试系统
Key words
wind turbines /
load /
variable pitch angle /
key components /
IMC load test system
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] 陈家伟, 龚春英, 陈杰, 等. 中小型风力发电机组恒功率软失速控制策略[J]. 电工技术学报, 2013, 28(1): 149-157.
CHEN J W, GONG C Y, CHEN J, et al.Constant power soft stall control strategy for small and medium wind turbines[J]. Transactions of China Electrotechnical Society, 2013, 28(1): 149-157.
[2] 包道日娜, 吴胜胜, 刘旭江, 等. 新型变桨风力机与数值模拟分析[J]. 太阳能学报, 2021, 42(9): 364-369.
BAO D R N, WU S S, LIU X J, et al. New type pitch wind turbine and numerical simulation analysis[J]. Acta energiae solaris sinica, 2021, 42(9): 364-369.
[3] SUNG C M, HANM C.Design and performance evaluation of hinge type pitch control system in small-size wind turbine[J]. International journal of precision engineering and manufacturing-green technology, 2016, 3(4): 335-341.
[4] ÇELIK E, KURT E, ÖZTÜRK N. Wind turbine speed control of a contactless piezoelectric wind energy harvester[J]. International journal of electronics, 2020, 107(2): 226-238.
[5] 高俊云, 杨兆建. 风电机组变桨系统载荷特性研究[J].太阳能学报, 2018, 39(3): 583-587.
GAO J Y, YANG Z J.Research on load characteristics of wind turbine pitch system[J]. Acta energiae solaris sinica, 2018, 39(3): 583-587.
[6] 李明, 田德, 王海宽, 等. 变桨距风力发电机组叶片模型的载荷测试实验[J]. 太阳能学报, 2013, 34(9): 1574-1578.
LI M, TIAN D, WANG H K,et al.Load test experiment of blade model of variable pitch wind turbine[J]. Acta energiae solaris sinica, 2012, 34(9): 1574-1578.
[7] 马志勇. 大型风电叶片结构设计方法研究[D]. 北京: 华北电力大学, 2011.
MA Z Y.Research on structural design method of large wind turbine blade[D]. Bejing: North China Electric Power University, 2015.
[8] 包道日娜, 刘嘉文, 刘旭江, 等. 伞形风力机调节机构关键零部件可靠性分析[J]. 太阳能学报, 2021, 42(10): 298-304.
BAO D R N, LIU J W, LIU X J,et al. Reliability analysis of key parts of regulating mechanism of umbrella wind turbine[J]. Acta energiae solaris sinica, 2021, 42(10): 298-304.
[9] 赵丽军, 张璠, 厉伟, 等. 风电机组风轮不平衡机械载荷时域特性分析[J]. 太阳能学报, 2020, 41(8): 342-350.
ZHAO L J, ZHANG N, LI I, et al.Time domain characteristics analysis of wind turbine unbalanced mechanical load[J]. Acta energiae solaris sinica, 2020, 41(8): 342-350.
[10] 吴尧, 高志鹰, 汪建文, 等. 水平轴风力机塔架的频率和振型特性实验研究[J]. 可再生能源, 2021, 39(1): 50-55.
WU Y, GAO Z Y, WANG J W, et al.Experimental study on frequency and vibration characteristics of horizontal axis wind turbine tower[J]. Renewable energy, 2021, 39(1): 50-55.
[11] 刘桐. 3 MW风电机组的载荷计算与轮毂强度分析[D]. 沈阳: 沈阳工业大学, 2013.
LIU T.3 MW load calculation and hub strength analysis of wind turbine[D]. Shenyang: Shenyang University of Technology, 2013.
基金
鄂尔多斯市科技合作重大专项(2021EEDSCXQDFZ009); 内蒙古自治区科技成果转化项目(CGZH2018131)