风电机组钢塔架与钢-混凝土组合塔架动力响应对比分析

陈俊岭, 高洁, 赵邦州, 阳荣昌

太阳能学报 ›› 2023, Vol. 44 ›› Issue (3) : 225-231.

PDF(2221 KB)
欢迎访问《太阳能学报》官方网站,今天是
PDF(2221 KB)
太阳能学报 ›› 2023, Vol. 44 ›› Issue (3) : 225-231. DOI: 10.19912/j.0254-0096.tynxb.2021-1346

风电机组钢塔架与钢-混凝土组合塔架动力响应对比分析

  • 陈俊岭1, 高洁1, 赵邦州1, 阳荣昌2
作者信息 +

COMPREHENSIVE ANALYSIS OF DYNAMIC RESPONSE OF STEEL AND STEEL-CONCRETE COMBINED WIND TURBINE TOWERS

  • Chen Junling1, Gao Jie1, Zhao Bangzhou1, Yang Rongchang2
Author information +
文章历史 +

摘要

采用FAST软件对同一风场、2 MW风电机组的纯钢塔架和钢-混凝土组合塔架进行正常运行工况和急停工况的动力响应分析。结果表明:两种工况下,纯钢塔架塔顶位移响应均大于钢混塔架;在正常运行工况下,两类塔架塔顶处加速度响应受3倍、6倍风轮转速对应的频率影响较大,且纯钢塔架受二阶振型影响明显;急停工况下,塔架振动加剧,纯钢塔架相比于钢混塔架更加敏感,两种塔架前后振动方向加速度响应主要受塔架一阶振型影响,而侧向振动方向加速度响应受塔架二阶振型影响明显。

Abstract

Software FAST is used to study the dynamic response of a single tube steel tower and a steel-concrete combined tower of a 2 MW wind turbine in the same wind farm under two typical working conditions - normal operation condition and emergency shut-down condition. The analysis results show that the displacement response at the top of the single steel tower is greater than that of the steel-concrete tower under both conditions, and under the normal operating condition, the acceleration response of the two towers is affected by frequency corresponding to the three and six times wind wheel rotation rate (3P, 6P). The dynamic response of the steeltower is obviously affected by the second-order vibration mode, and under the emergency shut-down condition, the vibration of the towers intensify, and the single steel tower is more sensitive than the steel-concrete tower, besides, the acceleration response in the fore-and-aft direction of the two towers is mainly affected by the first-order vibration mode, while in the lateral direction the acceleration response of the towers is obviously affected by the second-order vibration mode.

关键词

风电机组 / 塔架 / 动力响应 / 正常运行工况 / 急停工况

Key words

wind turbine / tower / dynamic response / normal operating condition / emergency shut-down condition

引用本文

导出引用
陈俊岭, 高洁, 赵邦州, 阳荣昌. 风电机组钢塔架与钢-混凝土组合塔架动力响应对比分析[J]. 太阳能学报. 2023, 44(3): 225-231 https://doi.org/10.19912/j.0254-0096.tynxb.2021-1346
Chen Junling, Gao Jie, Zhao Bangzhou, Yang Rongchang. COMPREHENSIVE ANALYSIS OF DYNAMIC RESPONSE OF STEEL AND STEEL-CONCRETE COMBINED WIND TURBINE TOWERS[J]. Acta Energiae Solaris Sinica. 2023, 44(3): 225-231 https://doi.org/10.19912/j.0254-0096.tynxb.2021-1346
中图分类号: TK83    TU391    TU398   

参考文献

[1] LEE J, ZHAO F, DUTTON A, et al.Global wind report 2021[R]. Global Wind Energy Council, 2021.
[2] 马赫男. 风电机组柔性塔筒将在控制技术研究及应用[D]. 保定: 华北电力大学, 2018.
MA H N.Research and application of load reduction control technology for flexible tower of wind turbine[D]. Baoding: North China Electric Power University, 2018.
[3] 刘红文, 王靛, 蒋韬, 等. 风电机组柔塔避振控制策略开发与验证[J]. 控制与信息技术, 2021, 472: 14-18.
LIU H W, WANG D, JIANG T, et al.Development and verification of control strategy to avoid soft tower resonance for wind turbine[J]. Control and information technology, 2021, 472: 14-18.
[4] 毕继红, 任洪鹏, 尹元彪. 预应力钢筋混凝土风力发电塔架的地震响应分析[J]. 天津大学学报, 2011, 44(2): 126-133.
BI J H, REN H P, YIN Y B.Seismic analysis of pre-stressed reinforced concrete wind-turbine tower[J]. Journal of Tianjin University, 2011, 44(2): 126-133.
[5] 李静平, 徐龙河. 钢及预应力钢筋混凝土风电塔筒模态分析[J]. 风机技术, 2012(5): 58-63.
LI J P, XU L H.Modal analysis of steel and pre-stressed reinforced concrete wind tower[J]. Chinese journal of turbomachinery, 2012(5):58-63.
[6] 陈俊岭, 何欣恒, 丛欧. 基于改进遗传算法的钢-混组合式风电机组塔架优化设计研究[J]. 太阳能学报, 2021, 42(7): 359-365.
CHEN J L, HE X H, CONG O.Design optimization of steel-concrete hybrid wind turbine tower based on improved genetic algorithm[J]. Acta energiae solaris sinica, 2021, 42(7): 359-365.
[7] 曹雨奇, 阳荣昌, 刘慧群, 等. 体外预应力混凝土风力发电塔地震易损性分析[J]. 同济大学学报(自然科学版), 2018, 46(11): 1501-1507.
CAO Y Q, YANG R C, LIU H Q, et al.Seismic fragility analysis for external prestressed concrete wind tower[J]. Journal of Tongji University(natural science edition), 2018, 46(11): 1501-1507.
[8] JONKMAN J M, BUHL JR M L. FAST user’s guide[R]. Golden, CO: National Renewable Energy Laboratory, 2005, 365: 366.
[9] HANSEN M O L, SØRENSEN J N, VOUTSINAS S, et al. State of the art in wind turbine aerodynamics and aeroelasticity[J]. Progress in aerospace sciences, 2006, 42(4): 285-330.
[10] JONKMAN J, BUTTERFIELD S, MUSIAL W, et al.Definition of a 5 MW reference wind turbine for offshore system development[R]. National Renewable Energy Lab(NREL), Golden, CO(United States), 2009.
[11] IEC 61400-1, Design requirements for wind turbines[S].
[12] 王大伟. 钢-混组合式风电机组塔筒抗震性能研究[D].上海: 同济大学, 2020.
WANG D W.Research on seismic performance of steel-concrete combined wind turbine tower[D]. Shanghai: Tongji University, 2020.
[13] BIR G.User’s guide to BModes (software for computing rotating beam-coupled modes)[R]. National Renewable Energy Lab(NREL), Golden, CO(United States), 2005.
[14] JONKMAN B.Turbsim user’s guide v2.00.00[R]. Natl Renew Energy Lab, 2014.
[15] JONKMAN J M, HAYMAN G, JONKMAN B, et al.AeroDyn v15 user’s guide and theory manual[R]. NREL Draft Report, 2015.
[16] MORIARTY P J, HANSEN A C.AeroDyn theory manual[R]. National Renewable Energy Lab, Golden, CO(United States), 2005.

基金

国家自然科学基金(51978528)

PDF(2221 KB)

Accesses

Citation

Detail

段落导航
相关文章

/