为探究风电叶片强度测试体系与拉挤板材力学行为,首先提出一种用于风电叶片金字塔结构测试技术,提出子部件试验新概念;其次进行子部件测试平台机械结构、液压系统及控制方案的设计,并利用有限元分析进行验证;最后基于所设计测试平台对子部件,即拉挤板材进行静力试验。结果表明:风电叶片金字塔结构的测试方案准确可行;部件试验设备最大应力发生在加载支架后梁,最大应力为242.5 MPa,最大位移为1.049 mm,未超其结构应力应变极限;拉挤板材破坏载荷为800 kN,失效变形形态包括弹性、屈服和断裂3个阶段,有限元分析数据与试验结果吻合较好,最终结果可为全尺寸叶片测试局部失效状况提供数据参考。
Abstract
In order to investigate the strength testing system of wind turbine blades and the mechanical behavior of pultrusion plate, firstly, a testing technique for wind turbine blade pyramid structure was proposed, and a new concept of sub-component testing was proposed. Secondly, the mechanical structure, hydraulic system and control scheme of the sub component test facility are designed and verified by finite element analysis. Finally, the static loading tests are performed on subcomponents, i.e. pultruded sheets, based on the designed test facility. Test results showed that the test scheme of wind turbine blade pyramid structure is accurate and feasible; the maximum stress of the component test facility occurs in the rear beam of the loading bracket, the maximum stress is 242.5 MPa, and the maximum displacement is 1.049 mm, which does not exceed its structural stress-strain limit; the damage load of the pultruded plate is 800 kN, the failure deformation pattern includes three stages of elasticity, yielding and fracture. The FEA data are in good agreement with the test results, and the final results can provide data reference for testing the local failure condition of the full-size blade.
关键词
风电叶片 /
拉挤板材 /
测试平台 /
子部件 /
有限元分析 /
金字塔方法
Key words
wind turbine blades /
pultrusion /
test facility /
sub-component /
finite element analysis /
pyramid method
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] CAO Q, XIAO L F, CHENG Z S, et al.Dynamic responses of a 10 MW semi-submersible wind turbine at an intermediate water depth: acomprehensive numerical and experimental comparison[J]. Ocean engineering, 2021, 232: 109-138.
[2] 李庆民, 于万水, 赵继尧. 支撑“双碳”目标的风光发电装备安全运行关键技术[J]. 高压电技术, 2021, 47(9): 3047-3060.
LI Q M, YU W S, ZHAO J Y, Key technologies for safe operation of wind and solar power generation equipment supporting the“dual carbon”goal[J]. High voltage technology, 2021, 47(9): 3047-3060.
[3] 李成良, 张金峰, 张登刚. 大型风电叶片全尺寸结构测试准确性研究[J]. 复合材料科学与工程, 2021(4): 83-88.
LI C L, ZHANG J F, ZHANG D G.Experimental and numercal analysis of the effect of assembly stress on the composite stiffened panel failure[J]. Composites science and engineering, 2021(4): 83-88.
[4] 李建伟, 黄雪梅, 张磊安, 等. 钢丝绳-滑轮在风电叶片静力试验中的磨损规律及优化匹配研究[J]. 机床与液压, 2021, 49(6): 12-16.
LI J W, HUANG X M, ZHANG L A, et al.Research on wear law and optimal matching of wire rope and pulley in wind power blade static test[J]. Machine tool and hydraulics, 2021, 49(6): 12-16.
[5] 安宗文, 杨晓玺, 寇海霞. 1.5 MW风电叶片多轴疲劳寿命分析[J]. 太阳能学报, 2020, 41(5): 129-135.
AN Z W, YANG X X, KOU H X.Multl-anxial fatigue liff analysis of 1.5 MW wind turbine blades[J]. Acta energiae solaris sinica, 2020, 41(5): 129-135.
[6] LEE H G, PARK J.Static test until structural collapse after fatigue testing of a full-scale wind turbine blade[J]. Composite structures, 2016, 136: 251-257.
[7] LEONG M, OVERGAARD L, THOMSEN O T, et al.Investigation of failure mechanisms in GFRP sandwich structures with face sheet wrinkle defects used for wind turbine blades[J]. Composite structures, 2012, 94(2): 768-778.
[8] 霍瑞丽, 陈登杨, 方海, 等. 不同温度环境下轻木夹芯复合材料弯曲疲劳性能试验[J]. 南京工业大学学报(自然科学版), 2021, 43(3): 344-350.
HUO R L, CHEN D Y, FANG H, et al.Flexural fatigue test of composite sandwich plate with light wood core in different temperatures[J]. Journal of Nanjing Tech University(natural science edition), 2021, 43(3): 344-350.
[9] 闫小强, 杨忠. 风电叶片用粘接剂与手糊树脂的剪切性能研究[J]. 天津科技, 2021, 48(7): 63-65.
YAN X Q, YANG Z.Study on shear properties of adhesive and hand lay-up resin for wind turbine blades[J]. Tianjin science and technology, 2021, 48(7): 63-62.
[10] 吴亚民, 马忠雷. 风电用高性能拉挤成型环氧树脂复合材料的制备与性能[J]. 绝缘材料, 2021, 54(8): 31-33.
WU Y M, MA Z L.Preparation and properties of high-performance pultruded epoxy[J]. Insulating materials, 2021, 54(8): 31-33.
[11] 周毛毛, 惠颖. 拉挤型玻璃纤维复合材料性能试验研究[J]. 低温建筑技术, 2016(11): 1-3.
ZHOU M M, HUI Y.Performance test of pultruded glass fiber composite materlals[J]. Low temperature architecture technology, 2016(11): 1-3.
[12] AL-SAADI A U, ARAVINTHAN T, LOKUGE W. Effects of fibre orientation and layup on the mechanical properties of the pultruded glass fibre reinforced polymer tubes[J]. Engineering structures, 2019(198): 1-16.
[13] MADENCI E, ZKL Y O, GEMI L.Experimental and theoretical investigation on flexure performance of pultruded GFRP composite beams with damage analyses[J]. Composite structures, 2020, 342: 152-162.
[14] FREUDENREICH K, ARGYRIADIS K.The load level of modern wind turbines according to IEC 61400-1[J]. Journal of physics conference series, 2007, 75(1): 62-75.
[15] 孟春玲, 胡宏梁, 李国峰, 等. 基于ANSYS的风机轮毂的强度分析及优化设计[J]. 计算机仿真, 2012, 29(7): 334-338.
MENG C L, HU H L, LI G F, et al.Optimization design and strength analysis for hub of wind turbines based on ansys[J]. Computer simulation, 2012, 29(7): 334-338.
[16] 顾岳飞. 大兆瓦风电机组塔架的有限元分析与优化设计[D]. 上海: 上海交通大学, 2012: 12-18.
GU Y F, Finite element analysis and optimal design of large megawatt wind turbine tower[D]. Shanghai: Shanghai Jiao Tong University, 2012: 12-18.
[17] 张培国, 史丽微, 郝磊, 等. 基于某产品减速器全液压磨合试验台的设计[J]. 液压与气动, 2020(5): 167-172.
ZHANG P G, SHI l W, HAO L, et al. The design based on a product reducer full hydraulic run in test stand[J]. Chinese hydraulics and pneumatics, 2020(5): 167-172.
基金
国家自然科学基金(52075305); 国家重点研发计划(2018YFB1501203); 山东省自然科学基金(ZR2019MEE076); 山东省重点研发计划(2019GGX104001)