CO2跨临界热泵高温化途径分析

史维秀, 纪雪园, 潘利生, 吕一帆, 魏小林

太阳能学报 ›› 2022, Vol. 43 ›› Issue (4) : 104-111.

PDF(1781 KB)
欢迎访问《太阳能学报》官方网站,今天是
PDF(1781 KB)
太阳能学报 ›› 2022, Vol. 43 ›› Issue (4) : 104-111. DOI: 10.19912/j.0254-0096.tynxb.2021-1349
电化学储能安全性与退役动力电池梯次利用关键技术专题

CO2跨临界热泵高温化途径分析

  • 史维秀1, 纪雪园1, 潘利生2, 吕一帆1, 魏小林2
作者信息 +

ANALYSIS ON APPROACHES FOR INCREASING HEAT SUPPLYING TEMPERATURE OF CO2 TRANSCRITICAL HEAT PUMP

  • Shi Weixiu1, Ji Xueyuan1, Pan Lisheng2, Lyu Yifan1, Wei Xiaolin2
Author information +
文章历史 +

摘要

CO2作为一种环境友好的自然工质,以其为循环工质的跨临界热泵制热能力突出。建立CO2跨临界增压和CO2跨临界热泵理论分析模型,研究不同增压过程对热泵系统COP、气冷器中水的出口温度及质量流量的影响规律。结果表明,2种热泵高温化方案均会提升压缩机等熵效率、功耗和压缩机出口工质温度,且提升了气冷器出口水温,但COP和热水的质量流量有所降低。综合来看,随气冷器出水温度的增加,增大压缩机吸气过热度的循环耗功上升幅度较小,但COP下降幅度较大,可在小范围内提升热水温度;提高压缩机出口压强能获得更高的热水温度,可控范围更大,且COP降低幅度较小。

Abstract

The transcritical heat pump with CO2, an environmentally friendly natural working fluid, shows great potential in high temperature heating. A CO2 transcritical pressurization analysis model and a CO2 transcritical heat pump analysis model have been established. Based on them, the effects of different pressurization processes on COP, outlet temperature and mass flow rate of water in gas cooler are studied. The results show that both approaches can improve the isentropic efficiency, power and outlet working fluid temperature of the compressor, and increase the outlet water temperature of the gas cooler, but decrease the COP and hot water mass flow. In general, when increasing the outlet water temperature of gas cooler, the approach of increasing the suction superheat makes power increases slightly, but the COP decreases greatly, which can increase hot water temperature in a small range. By increasing the compressor outlet pressure, the hot water temperature is higher, the controllable range is larger, and COP has a smaller decline.

关键词

二氧化碳 / 热泵系统 / 高温应用 / 离心式压缩机

Key words

carbon dioxide / heat pump system / high temperature application / centrifugal compressor

引用本文

导出引用
史维秀, 纪雪园, 潘利生, 吕一帆, 魏小林. CO2跨临界热泵高温化途径分析[J]. 太阳能学报. 2022, 43(4): 104-111 https://doi.org/10.19912/j.0254-0096.tynxb.2021-1349
Shi Weixiu, Ji Xueyuan, Pan Lisheng, Lyu Yifan, Wei Xiaolin. ANALYSIS ON APPROACHES FOR INCREASING HEAT SUPPLYING TEMPERATURE OF CO2 TRANSCRITICAL HEAT PUMP[J]. Acta Energiae Solaris Sinica. 2022, 43(4): 104-111 https://doi.org/10.19912/j.0254-0096.tynxb.2021-1349
中图分类号: TB61   

参考文献

[1] 潘利生, 魏小林, 史维秀.一种新型CO2跨临界动力循环理论研究[J]. 工程热物理学报, 2015, 36(6): 1182-1185.
PAN L S, WEI X L, SHI W X.Theoretical investigation on a novel CO2 transcritical power cycle[J]. Journal of engineering thermophysics, 2015, 36(6): 1182-1185.
[2] 宋昱龙, 王海丹, 殷翔,等. 跨临界CO2蒸气压缩式制冷与热泵技术综述[J]. 制冷学报, 2021, 42(2): 1-24.
SONG Y L, WANG H D, YIN X, et al. Review of transcritical CO2 vapor compression technology in refrigeration and heat pump[J]. Journal of refrigeration, 2021, 42(2): 1-24.
[3] 杨军, 陆平, 陈江平, 等. 跨临界CO2系统用膨胀机的开发与模型分析[J]. 上海交通大学学报, 2008, 42(3): 453-456.
YANG J, LU P, CHEN J P, et al. Development and model analysis of an expander for transcritical CO2 system[J]. Journal of Shanghai Jiaotong University, 2008(3): 453-456.
[4] ZHANG B, PENG X, HE Z, et al. Development of a double acting free piston expander for power recovery in transcritical CO2 cycle[J]. Applied thermal engineering, 2007, 27(8-9): 1629-1636.
[5] RONY U, GLADEN A.Parametric study and sensitivity analysis of a PV/microchannel direct-expansion CO2 heat pump[J]. Solar energy, 2021, 218: 282-295.
[6] ZHU Y H, HUANG Y L, LI C H, et al. Experimental investigation on the performance of transcritical CO2 ejector-expansion heat pump water heater system[J]. Energy conversion and management, 2018, 167: 147-155.
[7] 邹春妹, 岑继文, 刘培, 等. 跨临界二氧化碳热泵喷射循环实验[J]. 化工学报, 2016, 67(4): 1520-1526.
ZOU C M, CEN J W, LIU P, et al. Transcritical CO2 heat pumpsystem with and enjector[J]. CIESC journal, 2016, 67(4): 1520-1526.
[8] ZHU Y H, JIANG P X.Theoretical model of transcritical CO2 ejector with non-equilibrium phase change correlation[J]. International journal of refrigeration, 2018, 86: 218-227.
[9] 陈琪, 佟杨, 李矛, 等. 两种跨临界CO2热泵热水器系统循环性能实验研究[J]. 太阳能学报, 2013, 34(11): 1903-1909.
CHEN Q, TONG Y, LI M, et al. Experimental study on cycle performance of two transcritical CO2 heat pump water heater systems[J]. Acta solar energy sinica, 2013, 34(11): 1903-1909.
[10] RONY U, GLADEN A.Numerical modeling of a photovoltaic/microchannel direct-expansion evaporator for a CO2 heat pump[J]. Thermal science and engineering applications, 2021, 13(2): 021022.
[11] 余文芳, 李敏霞, 王飞波, 等. CO2系统微通道蒸发器的研究[J]. 工程热物理学报, 2015, 36(9): 1858-1862.
YU W F, LI M X, WANG F B, et al. Research on the micro-channels evaporator for carbon system[J]. Journal of engineering thermophysics, 2015, 36(9): 1858-1862.
[12] KASHIF N, BO S, AHMED E, et al. Performance optimization of CO2 heat pump water heater[J]. International journal of refrigeration, 2018, 85: 213-228.
[13] 袁秋霞, 马一太, 张子坤, 等. CO2水源热泵热水机气体冷却器的实验研究[J]. 太阳能学报, 2012, 33(10): 1797-1802.
YUAN Q X, MA Y T, ZHANG Z K, et al. Experimental study on gas cooler of CO2 water source heat pump water heater[J]. Acta energiae solaris sinica, 2012, 33(10): 1797-1802.
[14] CAO F, YE Z L, WANG Y K.Experimental investigation on the influence of internal heat exchanger in a transcritical CO2 heat pump water heater[J]. Applied thermal engineering, 2020, 168: 114855.
[15] LEMMONN E W, HUBER M L, MCLINDEN M O.Nist standard reference database 23, reference fluid thermodynamic and transport properties (REFPROP).version 9.0[CP/DK]. National institute of standards and technology, 2010.

基金

国家自然科学基金(51776215); 北京市自然科学基金(3192042); 北京建筑大学市属高校基本科研业务费专项资金(X20058)

PDF(1781 KB)

Accesses

Citation

Detail

段落导航
相关文章

/