含水合物沉积物力学-声学联合试验设备的开发和初步应用

徐佳琳, 黄玲惠, 许成顺, 赵雨晴

太阳能学报 ›› 2023, Vol. 44 ›› Issue (1) : 392-401.

PDF(2884 KB)
欢迎访问《太阳能学报》官方网站,今天是
PDF(2884 KB)
太阳能学报 ›› 2023, Vol. 44 ›› Issue (1) : 392-401. DOI: 10.19912/j.0254-0096.tynxb.2021-1353

含水合物沉积物力学-声学联合试验设备的开发和初步应用

  • 徐佳琳, 黄玲惠, 许成顺, 赵雨晴
作者信息 +

DEVELOPMENT AND PRELIMINARY APPLICATION OF MECHANICAL-ACOUSTIC TEST SYSTEM FOR HYDRATE-BEARING SEDIMENTS

  • Xu Jialin, Huang Linghui, Xu Chengshun, Zhao Yuqing
Author information +
文章历史 +

摘要

为开展天然气水合物沉积物力学、声学特性的试验研究,对高压-温控三轴试验设备的管道线路进行重新规划,并引入GCTS超声波测试系统。为了检验仪器性能,利用福建标准砂和甲烷气体制备不同水合物饱和度的沉积物试样,开展不同有效围压下的三轴排水剪切试验。结果表明:设备能稳定制备含水合物试样并进行力学试验,试验全过程可实时测试试样的压缩波速和剪切波速;波速变化与试样内部密实度、颗粒分布的变化等密切相关,可反映试样体积的变化及剪切初期的剪胀特性;通过固结后的波速计算试样的泊松比,在0.16~0.31之间。

Abstract

To study the mechanical and acoustic properties of natural gas hydrate-bearing sediments, the pipelines of high-pressure and temperature-controlled triaxial apparatus are replanned,and GCTs ultrasonic test system is introduced. To verify the reliability of the apparatus,specimens with various hydrate saturations were prepared with Fujian sand and CH4 gas, and drainage triaxial tests were performed under different effective confining pressures. The results show that hydrate-bearing specimens can be prepared and tested stably, and the compression and shear wave velocity can be measured in real time during tests. The change of wave velocity is related to the change of compactness and particle distribution inside the specimen,and can reflect volume change anddilatancy characteristics. Poisson’s ratios of specimens were calculated by the wave velocities after consolidation,which were about 0.16-0.31.

关键词

设备开发 / 天然气水合物 / 力学特性 / 声学特性

Key words

equipment / development / gas hydrates / mechanical properties / acoustic properties

引用本文

导出引用
徐佳琳, 黄玲惠, 许成顺, 赵雨晴. 含水合物沉积物力学-声学联合试验设备的开发和初步应用[J]. 太阳能学报. 2023, 44(1): 392-401 https://doi.org/10.19912/j.0254-0096.tynxb.2021-1353
Xu Jialin, Huang Linghui, Xu Chengshun, Zhao Yuqing. DEVELOPMENT AND PRELIMINARY APPLICATION OF MECHANICAL-ACOUSTIC TEST SYSTEM FOR HYDRATE-BEARING SEDIMENTS[J]. Acta Energiae Solaris Sinica. 2023, 44(1): 392-401 https://doi.org/10.19912/j.0254-0096.tynxb.2021-1353
中图分类号: TU431   

参考文献

[1] KVENVOLDEN K A, LORENSON T D.The global occurrence of natural gas hydrate[M]. USA:American Geophysical Union, 2001: 3-18.
[2] 张洪涛, 张海启, 祝有海. 中国天然气水合物调查研究现状及其进展[J]. 中国地质, 2007(6): 953-961.
ZHANG H T, ZHANG H Q, ZHU Y H.Gas hydrate investigation and research in China: present status and progress[J]. Geology in China, 2007(6): 953-961.
[3] CHONG Z R, YANG S,BABU P, et al.Review of natural gas hydrates as an energy resource: prospects and challenges[J]. Applied energy, 2016, 162: 1633-1652.
[4] HYODO M, YONEDA J, YOSHIMOTO N, et al.Mechanical and dissociation properties of methane hydrate-bearing sand in deep seabed[J]. Soils and foundations,2013, 53(2): 299-314.
[5] MIYAZAKI K MASUI A, SAKAMOTO Y, et al. Triaxial compressive properties of artificial methane-hydrate-bearing sediment[J]. Journal of geophysical research: solid earth, 2011, 116(B6): 1-11.
[6] 吴杨, 崔杰, 廖静容, 等. 不同细颗粒含量甲烷水合物沉积物三轴剪切试验研究[J]. 岩土工程学报, 2021, 43(1): 156-164.
WU Y, CUI J, LIAO J R, et al.Experimental study on mechanical characteristics of gas hydrate-bearing sands containing different fines[J]. Chinese journal of geotechnical engineering, 2021, 43(1): 156-164.
[7] 王淑云, 罗大双, 张旭辉, 等. 含水合物黏土的力学性质试验研究[J]. 实验力学, 2018, 33(2): 245-252.
WANG S Y, LUO D S, ZHANG X H, et al.Experimental study of mechanical properties of hydrate clay[J]. Journal of experimental mechanics, 2018, 33(2): 245-252.
[8] 颜荣涛, 韦昌富, 傅鑫晖, 等. 水合物赋存模式对含水合物土力学特性的影响[J]. 岩石力学与工程学报,2013, 32(S2): 4115-4122.
YAN R T,WEI C F, FU X H, et al.Influence of occurrence mode of hydrate on mechanical behaviour of hydrate-bearing soils[J]. Chinese journal of rock mechanics and engineering, 2013, 32(S2): 4115-4122.
[9] LUO T, LI Y, MADHUSUDHAN B N, et al.Comparative analysis of the consolidation and shear behaviors of CH4 and CO2 hydrate-bearing silty sediments[J]. Journal of natural gas science and engineering, 2020, 75: 103157.
[10] 袁益龙, 许天福, 辛欣, 等. 海洋天然气水合物降压开采地层井壁力学稳定性分析[J]. 力学学报, 2020, 52(2): 544-555.
YUAN Y L, XU T F, XIN X, et al.Mechanical stability analysis of strata and wellbore associated with gas production from oceanic hydrate-bearing sediments by depressurization[J]. Chinese journal of theoretical and applied mechanics, 2020, 52(2): 544-555.
[11] 张钰, 许成顺, 黄玲惠, 等. 考虑甲烷溶解的天然气水合物分解超孔隙水压力[J]. 科学技术与工程, 2020, 20(23): 9326-9334.
ZHANG Y, XU C S, HUANG L H, et al.Excess pore pressure of natural gas hydrate dissociation considering methane dissolution[J]. Science technology and engineering,2020, 20(23): 9326-9334.
[12] 胡高伟, 业渝光, 张剑, 等. 南海沉积物中天然气水合物饱和度与声学特性的关系[J]. 石油学报, 2013, 34(6): 1112-1118.
HU G W, YE Y G, ZHANG J, et al.Relationship between gas hydrate saturation and acoustic properties of sediments in the South China Sea[J]. Acta petrolei sinica, 2013, 34(6): 1112-1118.
[13] 胡高伟, 业渝光, 张剑, 等. 基于弯曲元技术的含水合物松散沉积物声学特性研究[J]. 地球物理学报, 2012,55(11): 3762-3773.
HU G W, YE Y G, ZHANG J, et al.Acoustic properties of hydrate-bearing unconsolidated sediments based on bender element technique[J]. Chinese journal of geophysics, 2012, 55(11): 3762-3773.
[14] 宋海斌, 松林修, 吴能友, 等. 海洋天然气水合物的地球物理研究(Ⅰ): 岩石物性[J]. 地球物理学进展,2001, 16(2): 118-126.
SONG H B, MATSUBAYASHI O, WU N Y, et al.Geophysical researches on marine gas hydrates(I): physical properties[J]. Progress in geophysics, 2001, 16(2): 118-126.
[15] 孙春岩, 章明昱, 牛滨华, 等. 天然气水合物微观模式及其速度参数估算方法研究[J]. 地学前缘, 2003(1):191-198.
SUN C Y, ZHANG M Y, NIU B H, et al.Micromodels of gas hydrate and their velocity estimation methods[J]. Earth science frontiers, 2003(1): 191-198.
[16] 张卫东, 王瑞和, 任韶然, 等. 天然气水合物储层物理模型[J]. 石油学报, 2011, 32(5): 866-871.
ZHANG W D, WANG R H, REN S R, et al.A study on physical models of gas hydrate reservoirs[J]. Acta petrolei sinica, 2011, 32(5): 866-871.
[17] 王宇, 李晓, 胡瑞林, 等. 岩土超声波测试研究进展及应用综述[J]. 工程地质学报, 2015, 23(2): 287-300.
WANG Y, LI X,HU R L, et al.Review of reasearch process and application of ultrasonic testing for rock and soil[J]. Journal of engineering geology, 2015, 23(2): 287-300.
[18] SELIG E T, ALBA P D, BALDWIN K, et al.Elastic-wave velocities and liquefaction potential[J]. Geotechnical testing journal, 1984, 7(2): 12.
[19] 黄星, 李东庆, 明锋, 等. 冻结粉质黏土声学特性与物理力学性质试验研究[J]. 岩石力学与工程学报, 2015,34(7): 1489-1496.
HUANG X, LI D Q, MING F, et al.Experimental study on acoustic characteristics and physico-mechanical properties of frozen silty clay[J]. Chinese journal of rock mechanics and engineering, 2015, 34(7): 1489-1496.
[20] 王峥辉. 下蜀黄土超声波波速与物理力学性质试验研究[D]. 南京: 河海大学, 2007.
WANG Z H.Testing study on relationship among P-wave velocity and physico-mechanical in xiashuloess[D]. Nanjing: Hohai University, 2007.
[21] WINTERS W J.Properties of samples containing natural gas hydrate from the JAPEX/JNOC/GSC Mallik 2L-38 gas hydrate research well, determined using gas hydrate and sediment test laboratory instrument(GHASTLI)[J]. Bulletin of the geological survey of Canada, 1999(544): 241-250.
[22] 邢兰昌, 祁雨, 朱泰, 等. 含甲烷水合物沉积物电-声响应特性联合探测:装置开发与实验研究[J]. 新能源进展, 2018, 6(2): 119-129.
XING L C, QI Y,ZHU T, et al.Joint detection of the electrical and acoustic response characteristics of methane hydrate bearing sediments: apparatus development and experimental study[J]. Advances in new and renewable energy, 2018, 6(2): 119-129.
[23] 孟庆国, 刘昌岭, 李承峰, 等. X射线粉晶衍射-拉曼光谱法研究含甲烷双组分水合物结构及谱学特征[J]. 岩矿测试, 2021, 40(1): 85-94.
MENG Q G, LIU C L, LI C F, et al.Characterization of binary hydrates containing methane by X-ray diffraction and microscopic laserraman spectroscopy[J]. Rock and mineral analysis, 2021, 40(1): 85-94.
[24] LEI L,GAI X, SEOL Y.Load-bearing characteristic of methane hydrate within coarse-grained sediments-Insights from isotropic consolidation[J]. Marine and petroleum geology, 2020, 121: 104571.
[25] YONEDA J, JIN Y, KATAGIRI J, et al.Strengthening mechanism of cemented hydrate-bearing sand at microscales[J]. Geophysical research letters, 2016, 43: 7442-7450.
[26] WU P, LI Y H,LIU W G, et al. Cementation failure behavior of consolidated gas hydrate-bearing sand[J]. Journal of geophysical research: solid earth,2020,125: e2019JB018623.
[27] MAKOGON T Y,SLOAN E D.Phase equilibrium for methane hydrate from 190 to 262 K[J]. Journal of chemical & engineering data,1994, 39(2): 351-353.
[28] 陈云敏, 周燕国, 黄博. 利用弯曲元测试砂土剪切模量的国际平行试验[J]. 岩土工程学报, 2006(07): 874-880.
CHEN Y M, ZHOU Y G, HUANG B.International parallel test on the measurement of shear modulus of sand using bender elements[J]. Chinese journal of geotechnical engineering, 2006(7): 874-880.
[29] 吴琪, 杨文保, 朱雨萌, 等. 砂-粉混合料小应变剪切模量弯曲元试验研究[J]. 东南大学学报(自然科学版),2018, 48(6): 1059-1067.
WU Q,YANG W B,ZHU Y M, et al.Experimental study on small-strain shear modulus of sand-silt mixtures by bender element testing[J]. Journal of Southeast University (natural science edition), 2018, 48(6): 1059-1067.
[30] CHOI J H, LIN J S, DAI S, et al.Triaxial compression of hydrate-bearing sediments undergoing hydrate dissociation by depressurization[J]. Geomechanics for energy and the environment, 2020, 23: 100187.
[31] 宋永臣, 赵佳飞, 杨明君. 天然气水合物开采基础[M]. 北京: 科学出版社, 2021: 43-46.
SONG Y C, ZHAO J F, YANG M J.Fundamentals of natural gas hydrates exploitation[M]. Beijing: Science Press, 2021: 43-46.
[32] 李力昕, 王晓翠, 胡洪嘉. 不同饱和度水合物对沉积物固结回弹特性的影响[J]. 工程建设, 2019, 51(12): 23-28.
LI L X, WANG X C, HU H J.Effect of hydrate of different saturation on consolidation and rebounding characteristics of deep-sea sediments[J]. Engineering construction, 2019, 51(12): 23-28.
[33] KIM J, DAI S, JIANG J, et al.Compressibility and particle crushing of Krishna-Godavari Basin sediments from offshore India: implications for gas production from deep-water gas hydrate deposits[J]. Marine and petroleum geology, 2019, 108: 697-704.
[34] MASUI A, HANEDA H, OGATA Y, et al.Effects of methane hydrate formation on shear strength of synthetic methane hydrate sediments[C]//Proceedings of the Fifteenth International Offshore and Polar Engineering Conference, Seoul, South Korea, 2005: 364-369.
[35] 周家作, 韦昌富, 魏厚振, 等. 多功能水合物沉积物三轴试验系统的研制与应用[J]. 岩土力学, 2020, 41(1): 342-352.
ZHOU J Z, WEI C F, WEI H Z, et al.Development and application of multi-functional triaxial test system for hydrate-bearing sediments[J]. Rock and soil mechanics,2020, 41(1): 342-352.
[36] 蒋成龙, 许成顺, 张小玲, 等. 三维柔性边界构建方法及其对砾质土变形发展影响的离散元数值研究[J]. 土木工程学报, 2021, 54(5): 77-86.
JIANG C L, XU C S, ZHANG X L, et al.Three-dimensional flexible boundary construction method and its influence on the deformation development of gravel soil by discrete element simulation[J]. China civil engineering journal, 2021, 54(5): 77-86.
[37] PRIEST J A, REES E V L, CLAYTON C R I. Influence of gas hydrate morphology on the seismic velocities of sands[J]. Journal of geophysical research: solid earth, 2009, 114(B11):1-13.
[38] 张怀文, 程远方, 朱海涛, 等. 不同类型含天然气水合物沉积物的声学特性[J]. 科技导报, 2018, 36(5): 92-97.
ZHANG H W, CHENG Y F, ZHU H T, et al.Acoustic properties of multi-type natural gas hydrate-bearing sediments[J]. Science & technology review, 2018, 36(5): 92-97.

基金

国家自然科学基金优秀青年基金(51722801)

PDF(2884 KB)

Accesses

Citation

Detail

段落导航
相关文章

/