单桩式风电基础结构冰振控制设计研究

张大勇, 董睿, 王帅飞, 王刚, 王国军, 黄亚婷

太阳能学报 ›› 2023, Vol. 44 ›› Issue (4) : 38-44.

PDF(1961 KB)
欢迎访问《太阳能学报》官方网站,今天是
PDF(1961 KB)
太阳能学报 ›› 2023, Vol. 44 ›› Issue (4) : 38-44. DOI: 10.19912/j.0254-0096.tynxb.2021-1385

单桩式风电基础结构冰振控制设计研究

  • 张大勇1, 董睿1, 王帅飞1,2, 王刚1,3, 王国军1,4, 黄亚婷1
作者信息 +

STUDY ON ICE VIBRATION CONTROL FOR OFFSHORE SINGLE PILE WIND TURBINE FOUNDATION

  • Zhang Dayong1, Dong Rui1, Wang Shuaifei1,2, Wang Gang1,3, Wang Guojun1,4, Huang Yating1
Author information +
文章历史 +

摘要

针对冰区海上单桩风电基础冰激振动问题,提出适用于该类结构的冰振控制措施,设计适用于该类结构的阻尼隔振体系,简化该体系的力学模型,明确体系参数与阻尼比的关系。利用ANSYS数值模拟分析风电基础结构在典型冰况下的减振效果,优化该阻尼隔振控制装置的设计参数。结果表明:阻尼隔振层刚度系数至少为0.6倍的塔筒刚度系数时,阻尼隔振体系与原结构动力特性相似,满足设计要求。

Abstract

Aiming at the ice-induced vibration problem of offshore wind turbine foundation with single pile in ice zone, the strategy of mitigation vibration for this kind of structure is discussed. The simplified mechanical model of damping vibration isolation system is established and the relationship between damping layer parameters and structural damping ratio is analyzed. The vibration reduction effect of wind turbine infrastructure is analyzed by using ANSYS numerical simulation under typical ice conditions, and the parameters of the damping vibration isolation device are optimized. The results show that when the stiffness coefficient of the damping isolation layer is at least 0.6 times that of the tower, the dynamic characteristics of the damping isolation system are similar to those of the original structure and meet the design requirements.

关键词

海上风电 / 基础 / 振动控制 / 动态响应 / 冰激振动 / 阻尼隔振层

Key words

offshore wind turbines / foundation / vibration control / dynamic response / ice-induced vibration / damping vibration isolation

引用本文

导出引用
张大勇, 董睿, 王帅飞, 王刚, 王国军, 黄亚婷. 单桩式风电基础结构冰振控制设计研究[J]. 太阳能学报. 2023, 44(4): 38-44 https://doi.org/10.19912/j.0254-0096.tynxb.2021-1385
Zhang Dayong, Dong Rui, Wang Shuaifei, Wang Gang, Wang Guojun, Huang Yating. STUDY ON ICE VIBRATION CONTROL FOR OFFSHORE SINGLE PILE WIND TURBINE FOUNDATION[J]. Acta Energiae Solaris Sinica. 2023, 44(4): 38-44 https://doi.org/10.19912/j.0254-0096.tynxb.2021-1385
中图分类号: TM315   

参考文献

[1] CLOUGH H F, VINSON T S.Ice forces on fixed conical structures[C]//Proceedings of the 5th International Offshore Mechanics and Arctic Engineering Symposium, Tokyo, Japan, 1986: 507-514.
[2] SAEKI H, ONO T, NAKAZAWA N, et al.The coefficient of friction between sea ice and various materials used in offshore structures[J]. Journal of energy resources technology, 1986, 108: 65-71.
[3] 张大勇, 王国军, 王帅飞, 等. 冰区海上风电基础的抗冰性能分析[J]. 船舶力学, 2018, 22(5): 615-627.
ZHANG D Y, WANG G J, WANG S F, et al.Ice-resistant performance analysis of offshore wind turbine foundation in ice zone[J]. Journal of ship mechanics, 2018, 22(5): 615-627.
[4] BALENDRA T, WANG C M, CHEONG H F.Effectiveness of tuned liquid column dampers for vibration control of towers[J]. Engineering structures, 1995, 17(9): 668-675.
[5] WOUDE C, NARASIMHAN S.A study on vibration isolation for wind turbine structures[J]. Engineering structures, 2014, 60: 223-234.
[6] COLWELL S, BASU B.Tuned liquid column dampers in offshore wind turbines for structural control[J]. Engineering structures, 2009, 31(2): 358-368.
[7] 陈易明, 朱才朝, 宋朝省, 等. 基于TMD的单柱式海上风力发电机系统动态特性分析[J]. 太阳能学报, 2020, 41(10): 276-284.
CHEN Y M, ZHU C C, SONG C X, et al.Dynamic characteristics analysis of offshore wind turbine with monopole foundation based on TMD[J]. Acta energiae solaris sinica, 2020, 41(10): 276-284.
[8] 欧进萍, 龙旭, 肖仪清, 等. 导管架式海洋平台结构阻尼隔振体系及其减振效果分析[J]. 地震工程与工程振动, 2002, 22(3): 115-122.
OU J P, LONG X, XIAO Y Q, et al.Damping isolation system and its vibration-suppressed effectiveness analysis for offshore platform jacket structures[J]. Earthquake engineering and engineering vibration, 2002, 22(3): 115-122.
[9] 陈星, 王翎羽, 宋安, 等. TLD水箱减(冰)振的现场试验研究[J]. 海洋学报(中文版), 1995, 17(2): 140-144.
CHEN X, WANG L Y, SONG A, et al.Field experimental study on vibration reduction of TLD water tank[J]. Aata oceanologica sinica (Chinese version), 1995, 17(2): 140-144.
[10] YUE Q J, ZHANG L, ZHANG W S, et al.Mitigating ice-induced jacket platform vibrations utilizing a TMD system[J]. Cold regions science and technology, 2009, 56(2): 84-89.
[11] 张文首, 张力, 岳前进. 基于加速度反馈的大型复杂结构H控制[J]. 工程力学, 2009, 26(5): 216-220.
ZHANG W S, ZHANG L, YUE Q J.H control based on acceleration feedback of complex large-scale structures[J]. Engineering mechanics, 2009, 26(5): 216-220.
[12] 张力, 岳前进, 张文首, 等. 一种调谐质量阻尼器(TMD)等效阻尼力测量方法[J]. 大连理工大学学报, 2010, 50(2): 162-166.
ZHANG L, YUE Q J, ZHANG W S, et al.Measurement method for equivalent damping force of tuned mass damper (TMD)[J]. Journal of Dalian University of Technology, 2010, 50(2): 162-166.
[13] 张力, 张文首, 岳前进. 海洋平台冰激振动吸振减振的实验研究[J]. 中国海洋平台, 2007(5): 33-37.
ZHANG L, ZHANG W S, YUE Q J.Experimental research on mitigation of offshore platform induced by ice excitation with absorbed damper[J]. China offshore platform, 2007(5): 33-37.
[14] KARNA T, IZUMIYAMA K, YUE Q J, et al.An upper bound model for self-excited vibrations[C]//Proceedings of the 19th International Conference on Port and Ocean Engineering under Arctic Conditions, Dalian, China, 2007: 177-189.
[15] 龙旭, 吴斌, 欧进萍. 抗震结构的阻尼减振效果分析[J]. 世界地震工程, 2001, 17(1): 40-45.
LONG X, WU B, OU J P.Analysis of damping effect on vibration reduction of the aseismic structure[J]. World information on earthquake engineering, 2001, 17(1): 40-45.

基金

国家自然科学基金(52071055); 辽宁省高等学校创新团队(LT2019004)

PDF(1961 KB)

Accesses

Citation

Detail

段落导航
相关文章

/