闭式布雷顿循环热泵储电系统的㶲分析

吴智泉, 王际辉, 白宁

太阳能学报 ›› 2023, Vol. 44 ›› Issue (3) : 336-343.

PDF(1940 KB)
欢迎访问《太阳能学报》官方网站,今天是
PDF(1940 KB)
太阳能学报 ›› 2023, Vol. 44 ›› Issue (3) : 336-343. DOI: 10.19912/j.0254-0096.tynxb.2021-1393

闭式布雷顿循环热泵储电系统的㶲分析

  • 吴智泉, 王际辉, 白宁
作者信息 +

EXERGY ANALYSIS FOR PUMPED THERMAL ELECTRICITY STORAGE SYSTEM BASED ON CLOSED BRAYTON CYCLE

  • Wu Zhiquan, Wang Jihui, Bai Ning
Author information +
文章历史 +

摘要

该文针对一种基于闭式布雷顿循环的热泵储电系统,分析主要设备的㶲损失与㶲效率。对于压缩机和透平,发电系统中的压缩机由于工作温度区间跨越了环境温度,具有最高的㶲损失;对于换热器,工作在环境温度附近的低温换热器㶲效率最低(不考虑水冷换热器),而㶲损失最大的为水冷换热器。计算得到本系统的㶲效率为59.27%。提高压缩机和透平的效率可提升系统㶲效率,且发电系统中的设备效率对系统㶲效率的影响更显著;此外,降低冷却水的温度或有效利用冷却水的热量均可以提高系统的㶲效率。

Abstract

Pumped thermal electricity storage (PTES) technology can effectively solve the problem of output fluctuation of new energy power generation system. This paper aims at analyzing the exergy loss and efficiency of the main components in a PTES system based on closed Brayton cycle. It is found that for the compressors and turbines, the compressor in the power generation system has the maximum exergy loss due to its working temperature range crossing the ambient temperature. For the heat exchangers, the exergy efficiency of the low-temperature heat exchanger working near the ambient temperature is the lowest (excluding water-cooled heat exchanger), and the water-cooled heat exchanger has the maximum exergy loss. The calculated system exergy efficiency is 59.27%. The system exergy efficiency can be improved by raising the efficiencies of the compressors and turbines, and the component efficiency in the power generation system has a greater influence on the system exergy efficiency. Besides, reducing the cooling water temperature or effectively utilizing the heat of the cooling water can optimize the system exergy efficiency.

关键词

电能储存 / 布雷顿循环 / 热泵 / ?损失 / ?效率

Key words

electric energy storage / Brayton cycle / heat pump / exergy loss / exergy efficiency

引用本文

导出引用
吴智泉, 王际辉, 白宁. 闭式布雷顿循环热泵储电系统的㶲分析[J]. 太阳能学报. 2023, 44(3): 336-343 https://doi.org/10.19912/j.0254-0096.tynxb.2021-1393
Wu Zhiquan, Wang Jihui, Bai Ning. EXERGY ANALYSIS FOR PUMPED THERMAL ELECTRICITY STORAGE SYSTEM BASED ON CLOSED BRAYTON CYCLE[J]. Acta Energiae Solaris Sinica. 2023, 44(3): 336-343 https://doi.org/10.19912/j.0254-0096.tynxb.2021-1393
中图分类号: TK02   

参考文献

[1] 张琼, 王亮, 谢宁宁, 等. 基于正/逆布雷顿循环的热泵储电系统性能研究[J]. 中外能源, 2017, 22(2): 86-92.
ZHANG Q, WANG L, XIE N N, et al.The performance of heat pump electricity storage system based on normal and reverse Brayton cycle[J]. Sino-global energy, 2017, 22(2): 86-92.
[2] 张琼, 王亮, 徐玉杰, 等. 热泵储电技术研究进展[J].中国电机工程学报, 2018, 38(1): 178-185.
ZHANG Q, WANG L, XU Y J, et al.Research progress in pumped heat electricity storage system: a review[J]. Proceedings of the CSEE, 2018, 38(1): 178-185.
[3] CHEN H, CONG T N, YANG W, et al.Progress in electrical energy storage system: a critical review[J]. Progress in natural science, 2009, 19(3): 291-312.
[4] 刘金超, 徐玉杰, 陈宗衍,等. 压缩空气储能储气装置发展现状与储能特性分析[J]. 科学技术与工程, 2014, 14(35): 148-156.
LIU J C, XU Y J, CHEN Z Y, et al.The development status and energy storage characteristic of gas storage device of compressed air energy storage system[J]. Science technology and engineering, 2014, 14(35): 148-156.
[5] 卢恒, 戴叶, 邹杨, 等. 交替式热泵热机储能系统及效率分析[J]. 中外能源, 2019, 24(9): 86-96.
LU H, DAI Y, ZOU Y, et al.Alternating heat pump-heat engine energy storage system and its efficiency analysis[J].Sino-global energy, 2019, 24(9): 86-96.
[6] 张谨奕, 王含, 白宁, 等. 热泵储电系统的热力学分析[J]. 热力发电, 2020, 49(8): 43-49.
ZHANG J Y, WANG H, BAI N, et al.Thermodynamic analysis for heat pump electricity storage system[J]. Thermal power generation, 2020, 49(8): 43-49.
[7] 殷子彦, 戴叶, 徐博, 等. 新型热泵储电系统的设计方案及其性能分析[J]. 可再生能源, 2019, 37(5): 784-790.
YIN Z Y, DAI Y, XU B, et al.New design scheme of pumped thermal electricity system and its performance analysis[J]. Renewable energy resources, 2019, 37(5): 784-790.
[8] MCTIGUE J D, WHITE A J, MARKIDES C N.Parametric studies and optimisation of pumped thermal electricity storage[J]. Applied energy, 2015, 137: 800-811.
[9] WHITE A, PARKS G, MARKIDES C N.Thermodynamic analysis of pumped thermal electricity storage[J]. Applied thermal engineering, 2013, 53(2): 291-298.
[10] DESRUES T, RUER J, MARTY P, et al.A thermal energy storage process for large scale electric applications[J]. Applied thermal engineering, 2010, 30(5): 425-432.
[11] 杨博, 陈林根, 戈延林, 等. 闭式内可逆回热布雷顿热电冷联产装置㶲分析[J]. 热力透平, 2014, 43(2): 134-138.
YANG B, CHEN L G, GE Y L, et al.Exergy analysis of a closed endoreversible regenerative Brayton CCHP plant[J]. Thermal turbine, 2014, 43(2): 134-138.
[12] 陈双涛, 侯予, 陈良. 空间闭式布雷顿太阳能热动力系统㶲分析[J]. 太阳能学报, 2010, 31(3): 351-356.
CHEN S T, HOU Y, CHEN L.Exergy analysis of solar dynamic closed Brayton cycle for space applications[J]. Acta energiae solaris sinica, 2010, 31(3): 351-356.
[13] 张万里, 陈林根, 孙丰瑞. 布雷顿、 逆布雷顿循环组成的联合循环㶲分析[J]. 燃气涡轮试验与研究, 2005, 18(4): 45-49.
ZHANG W L, CHEN L G, SUN F R.Exergy analysis for combined Brayton and inverse Brayton cycles[J]. Gas turbine experiment and research, 2005, 18(4): 45-49.
[14] THESS A.Thermodynamic efficiency of pumped heat electricity storage[J]. Physical review letters, 2013, 111(11): 110602.
[15] 曾丹苓, 敖越, 张新铭, 等. 工程热力学[M]. 第3版. 北京: 高等教育出版社, 2002: 114-115.
ZENG D L, AO Y, ZHANG X M, et al.Engineering thermodynamics[M]. 3rd edition. Beijing: Higher Education Press, 2002: 114-115.
[16] GB/T 14909—2021 能量系统分析㶲技术导则[S].
GB/T 14909—2021 Technical guidelines for exergy analysis in energy systems[S].
[17] 祁大同. 离心式压缩机原理[M]. 北京: 机械工业出版社, 2017: 27-29.
QI D T.Principle of centrifugal compressor[M]. Beijing: China Machine Press, 2017: 27-29.

基金

北京市科技计划(Z201100004520006)

PDF(1940 KB)

Accesses

Citation

Detail

段落导航
相关文章

/