质子交换膜燃料电池整车辅助散热系统设计建模及分析

陶丽蓉, 刘煜, 孔红兵, 赵政顺

太阳能学报 ›› 2023, Vol. 44 ›› Issue (4) : 299-305.

PDF(1630 KB)
欢迎访问《太阳能学报》官方网站,今天是
PDF(1630 KB)
太阳能学报 ›› 2023, Vol. 44 ›› Issue (4) : 299-305. DOI: 10.19912/j.0254-0096.tynxb.2021-1396

质子交换膜燃料电池整车辅助散热系统设计建模及分析

  • 陶丽蓉1, 刘煜1,2, 孔红兵1,2, 赵政顺2
作者信息 +

DESIGN, MODELING AND ANALYSIS OF AUXILIARY HEAT DISSIPATION SYSTEM FOR PROTON EXCHANGE MEMBRANE FUEL CELL VEHICLE

  • Tao Lirong1, Liu Yu1,2, Kong Hongbing1,2, Zhao Zhengshun2
Author information +
文章历史 +

摘要

建立车载质子交换膜燃料电池(PEMFC)辅助散热系统数学模型,进行某客车PEMFC发动机辅助散热系统的管路连接方式设计,对管路流阻、冷却液流量及其温升进行分析并开展试验对数学模型进行验证。结果表明:数学模型准确可靠且可用于设计和优选PEMFC辅助散热系统的管路连接方案,相同总冷却液流量下(空压机控制器-空压机本体)||(降压DCDC-升压DCDC)||(氢泵控制器)的三路并联方案的总流阻较(氢泵控制器-空压机控制器-空压机本体)||(降压DCDC-升压DCDC)的两路并联方案降低40.7%,各分支管路的冷却液流量均满足部件散热要求,冷却液温升满足整车散热要求。

Abstract

The mathematical model of the auxiliary heat dissipation system for vehicle PEMFC is established, and the pipeline connection modes of the auxiliary heat dissipation system for the PEMFC engine system of a vehicle are designed. The flow resistance of the pipeline, coolant flow rate and coolant temperature rise are analyzed, and experiment is carried out to verify the mathematical model. The results show that the mathematical model is accurate and reliable which can be used to design and optimize the pipeline connection mode of PEMFC auxiliary heat dissipation system. Under the same total coolant flow rate, the total flow resistance of the pipeline of the three-way parallel solution (air compressor controller - air compressor ontology) || (step-down DCDC- booster DCDC) || (hydrogen pump controller) is 40.7% lower than that of the two-way parallel solution (hydrogen pump controller - air compressor controller - air compressor ontology) || (step-down DCDC- booster DCDC). The coolant flow rate of each branch pipeline meets the heat dissipation requirements of components, and the temperature rise of the coolant also meets the heat dissipation requirements of the vehicle.

关键词

质子交换膜燃料电池 / 热管理 / 建模 / 辅助散热 / 系统设计 / 流阻

Key words

proton exchange membrane fuel cell / thermal management / modeling / auxiliary heat dissipation / system design / flow resistance

引用本文

导出引用
陶丽蓉, 刘煜, 孔红兵, 赵政顺. 质子交换膜燃料电池整车辅助散热系统设计建模及分析[J]. 太阳能学报. 2023, 44(4): 299-305 https://doi.org/10.19912/j.0254-0096.tynxb.2021-1396
Tao Lirong, Liu Yu, Kong Hongbing, Zhao Zhengshun. DESIGN, MODELING AND ANALYSIS OF AUXILIARY HEAT DISSIPATION SYSTEM FOR PROTON EXCHANGE MEMBRANE FUEL CELL VEHICLE[J]. Acta Energiae Solaris Sinica. 2023, 44(4): 299-305 https://doi.org/10.19912/j.0254-0096.tynxb.2021-1396
中图分类号: TM911.48   

参考文献

[1] 孟祥廷. 燃料电池发动机热管理系统设计与优化[D]. 济南: 山东大学, 2020.
MENG X T.Design and optimization of fuel cell thermal management system[D]. Ji'nan: Shandong University, 2020.
[2] 卢炽华, 王良旭, 刘志恩, 等. 燃料电池汽车整车热管理系统设计与仿真分析[J]. 重庆大学学报, 2022(10): 48-61.
LU Z H, WANG L X, LIU Z E, et al.Design and simulation analysis of the whole vehicle thermal management system for fuel cell vehicle[J]. Journal of Chongqing University, 2022(10): 48-61.
[3] 王建建, 胡辰树. 我国氢燃料电池专用车发展现状与趋势分析[J]. 专用汽车, 2021(4): 51-55.
WANG J J, HU C S.Development status and trend analysis of hydrogen fuel cell special vehicles in China[J]. Special purpose vehicle, 2021(4): 51-55.
[4] 张敏. 75 kW质子交换膜燃料电池测试台散热系统设计[J]. 农业装备与车辆工程, 2017, 55(8): 15-18.
ZHANG M.Design of cooling system for a 75 kW PEMFC testing platform[J]. Agricultural equipment and vehicle engineering, 2017, 55(8): 15-18.
[5] 郑文杰, 杨径, 朱林培, 等. 车用燃料电池热管理性能仿真与试验研究[J]. 汽车工程, 2021, 43(3): 381-386.
ZHENG W J, YANG J, ZHU L P, et al.Simulation and experimental study on thermal management system of vehicle fuel cell[J]. Automotive engineering, 2021, 43(3): 381-386.
[6] 李菁, 汪怡平, 陶琦, 等. 全功率燃料电池汽车散热系统设计、建模与分析[J]. 汽车工程学报, 2019, 9(6): 462-467.
LI J, WANG Y P, TAO Q, et al.Design,modeling and analysis of heat dissipation system for full-power fuel cell vehicles[J]. Chinese journal of automotive engineering, 2019, 9(6): 462-467.
[7] HASEGAWA T, IMANISHI H, NADA M, et al.Development of the fuel cell system in the Mirai FCV[C]// Sae World Congress & Exhibition, Detroit, America, 2016.
[8] 常国峰, 曾辉杰, 许思传. 燃料电池汽车热管理系统的研究[J]. 汽车工程, 2015, 37(8): 959-963.
CHANG G F, ZENG H J, XU S C.A study on the thermal management system of fuel cell vehicle[J]. Automotive engineering, 2015, 37(8): 959-963.
[9] 周奕, 陈建利, 赵阳, 等. 燃料电池客车散热系统设计分析[J]. 上海汽车, 2010(1): 19-20, 48.
ZHOU Y, CHEN J L, ZHAO Y, et al.Design and analysis of heat dissipation system for fuel cell bus[J]. Shanghai automotive, 2010(1): 19-20, 48.
[10] 丁琰, 常国峰, 许思传. 燃料电池发动机散热器传热与流阻特性分析[J]. 电源技术, 2014, 38(2): 262-264, 275.
DING Y, CHANG G F, XU S C.Characteristic analysis of heat transfer and pressure drop on fuel cell engine radiator[J]. Power technology, 2014, 38(2): 262-264, 275.
[11] 郭硕. 质子交换膜燃料电池热管理系统研究[D]. 合肥: 合肥工业大学, 2020.
GUO S.Study on proton exchange membrane fuel cell thermal management system[D]. Hefei: Hefei University of Technology, 2020.
[12] 纪合超, 陈涛, 刘士华, 等. 质子交换膜燃料电池温度监控系统的设计与开发[J]. 太阳能学报, 2020, 41(11): 375-380.
JI H C, CHEN T, LIU S H, et al.Design and development of temperature monitoring system for proton exchange membrane fuel cells[J]. Acta energiae solaris sinica, 2020, 41(11): 375-380.

基金

四川省重大科技专项(氢燃料电池客车及关联产业关键技术研究与示范)(2019ZDZX0002)

PDF(1630 KB)

Accesses

Citation

Detail

段落导航
相关文章

/