基于MOPSO的荞麦秸秆育苗钵成型工艺参数优化

杨杰, 张静, 孙欣伊, 张颖男, 郑德聪

太阳能学报 ›› 2023, Vol. 44 ›› Issue (5) : 1-9.

PDF(2661 KB)
欢迎访问《太阳能学报》官方网站,今天是
PDF(2661 KB)
太阳能学报 ›› 2023, Vol. 44 ›› Issue (5) : 1-9. DOI: 10.19912/j.0254-0096.tynxb.2021-1401

基于MOPSO的荞麦秸秆育苗钵成型工艺参数优化

  • 杨杰1, 张静1, 孙欣伊2, 张颖男1, 郑德聪1
作者信息 +

OPTIMIZATION OF PROCESS PARAMETERS OF BUCKWHEAT STRAW SEEDLING BOXING BASED ON MOPSO

  • Yang Jie1, Zhang Jing1, Sun Xinyi2, Zhang Yingnan1, Zheng Decong1
Author information +
文章历史 +

摘要

采用响应面法研究荞麦秸秆生物质育苗钵密度、跌落破损率和承压破损率3个物理性能与成型压力、粘结剂用量及保压时间的关系,并应用多目标粒子群优化(MOPSO)算法对工艺参数进行三响应优化分析。试验结果表明:当压力为8~12 MPa、粘结剂用量为60%~90%、保压时间为11~14 min 时,育苗钵密度可达1.041 g/cm3以上,跌落破损率和承压破损率分别在2.97%和2.65%以下。最优成型工艺参数为压力11.73 MPa,粘结剂用量60.5%,保压时间12.7 min,此条件下育苗钵密度达到1.168 g/cm3,跌落破损率和承压破损率分别为2.52%和2.58%。

Abstract

Response surface methodology (RSM) is used to study the relationship between three physical properties of biomass seedling pot density, drop breakage rate and pressure breakage rate of buckwheat straw and molding pressure, dosage of binder and holding time. MOPSO optimization algorithm is used to carry out three response optimization analysis of process parameters. The experimental results show that when the pressure is 8-12 MPa, the amount of binder is 60%-90%, and the pressure holding time is 11-14 min, the seedling pot density can reach above 1.041 g/cm3, and the drop damage rate and pressure damage rate are below 2.97% and 2.65%, respectively. When the optimal molding parameters are pressure 11.73 MPa, binder dosage 60.5% and holding time 12.7 min, the seedling pot density reaches 1.168 g/cm3, and the drop damage rate are 2.52% and 2.58%, respectively.

关键词

生物质 / 优化 / 物理性能 / 秸秆育苗钵 / 多目标粒子群优化算法

Key words

biomass / optimization / physical properties / straw seedling pot / MOPSO

引用本文

导出引用
杨杰, 张静, 孙欣伊, 张颖男, 郑德聪. 基于MOPSO的荞麦秸秆育苗钵成型工艺参数优化[J]. 太阳能学报. 2023, 44(5): 1-9 https://doi.org/10.19912/j.0254-0096.tynxb.2021-1401
Yang Jie, Zhang Jing, Sun Xinyi, Zhang Yingnan, Zheng Decong. OPTIMIZATION OF PROCESS PARAMETERS OF BUCKWHEAT STRAW SEEDLING BOXING BASED ON MOPSO[J]. Acta Energiae Solaris Sinica. 2023, 44(5): 1-9 https://doi.org/10.19912/j.0254-0096.tynxb.2021-1401
中图分类号: S216.2   

参考文献

[1] 高忠坡, 倪嘉波, 李宁宁. 我国农作物秸秆资源量及利用问题研究[J]. 农机化研究, 2022, 44(4): 1-6, 25.
GAO Z P, NI J B, LI N N.Resources on the quantity and utilization of crop straw resources in China[J]. Journal of agricultural mechanization research, 2022, 44(4): 1-6, 25.
[2] 刘洪杰. 生物质育苗营养钵成型机理与装备研究[D]. 保定: 河北农业大学, 2015.
LIU H J.Biomass seedling nutrition bowl forming mechanism and equipment research[D]. Baoding: Hebei Agricultural University, 2015.
[3] 卜一, 唐超, 李尽朝, 等. 大垄双行荞麦播种机的研制[J]. 干旱地区农业研究, 2016, 34(3): 281-290.
BU Y, TANG C, LI J C, et al.Development of buckwheat planter with two rows in one big ridge[J]. Agricultural research in the arid areas, 2016, 34(3): 281-290.
[4] 梁改梅, 陈稳良, 李秀莲, 等. 荞麦秸秆综合利用探索[J]. 农业开发与装备, 2015(4): 78-80.
LIANG G M, CHEN W L, LI X L, et al.Exploration on comprehensive utilization of buckwheat straw[J]. Agricultural development and equipment, 2015(4): 78-80.
[5] BILES W E.A response surface method for experimental optimization of multi-response processes[J]. Industrial & engineering chemistry process design & development, 1975, 14(2): 152-158.
[6] ALIBRANDI U.A response surface method for stochastic dynamic analysis[J]. Reliability engineering and system safety, 2014, 126: 44-53.
[7] KALIL S J, MAUGERI F, RODRIGUES M I.Response surface analysis and simulation as a tool for bioprocess design and optimization[J]. Process biochemistry, 2000, 35(6): 539-550.
[8] VENKATES V, GOYAL S.Expectation disconfirmation and technology adoption: polynomial modeling and response surface analysis[J]. MIS quarterly, 2010, 34(2): 281-303.
[9] 谢承旺, 李凯, 徐君, 等. 一种改进型多目标粒子群优化算法MOPSO-Ⅱ[J]. 武汉大学学报(理学版), 2014, 60(2): 144-150.
XIE C W, LI K, XU J, et al.An improved multi-objective particle swarm optimization algorithm MOPSO-Ⅱ[J]. Journal of Wuhan University (science edition), 2014, 60(2): 144-150.
[10] 冯金芝, 陈兴, 郑松林. 一种改进的多目标粒子群优化算法及其应用[J]. 计算机应用研究, 2014, 31(3): 675-678, 683.
FENG J Z, CHEN X, ZHENG S L.Improved MOPSO algorithm and its application[J]. Application research of computers, 2014, 31(3): 675-678, 683.
[11] 刘衍民, 赵庆祯, 隋常玲. 基于动态多种群的多目标粒子群算法[J]. 计算机仿真, 2011, 28(5): 241-245.
LIU Y M, ZHAO Q Z, SUI C L.Multi-objective particle swarm optimizer based on dynamic multi-swarm[J]. Computer simulation, 2011, 28(5): 241-245.
[12] 马方, 陈中玉. 可降解秸秆育苗钵粘结剂的实验研究[J]. 吉林农业, 2010(12): 93.
MA F, CHEN Z Y.Experimental study on the bonder of degradable straw seedling bottle[J]. Agriculture of Jilin, 2010(12): 93.
[13] 白晓虎, 李芳, 张祖立, 等. 秸秆挤压成型育苗钵的试验研究[J]. 农机化研究, 2008 (2): 136-138.
BAI X H, LI F, ZHANG Z L, et al.Experimental study on seedling pot extruded by straw[J]. Journal of agricultural mechanization research, 2008(2): 136-138.
[14] ASTM D440-86, Standard test method of drop shatter test for coal[S].
[15] 王慧杰, 冯瑞云, 刘跃鹏, 等. 秸秆育苗钵旋压成型制钵机的研制[J]. 中国农机化学报, 2017, 38(4): 37-41.
WANG H J, FENG R Y, LIU Y P, et al.Design of spin-forming machine for seedling pot made from straw[J]. Chinese journal of agricultural mechanization, 2017, 38(4): 37-41.
[16] 陈炜. 一种动态分群的自适应粒子群优化算法[J]. 信息技术, 2015(1): 101-104.
CHEN W.An adaptive particle swarm optimization algorithm with dynamic sub-swarms[J]. Information technology, 2015(1): 101-104.
[17] 程军. 基于生物行为机制的粒子群算法改进及应用[D]. 广州: 华南理工大学, 2014.
CHENG J.Modification and application of particle swarm optimization algorithm based on biological behavior mechanism[D]. Guangzhou: South China University of Technology, 2014.
[18] 郭康权, 赵东. 植物秸秆模压成型流变特性的试验研究[J]. 西北农林科技大学学报(自然科学版), 1995, 23(3): 11-15.
GUO K Q, ZHAO D.An experimental study on the reological properties of the cornstalk in the mold press process[J]. Journal of Northwest A&F University (natural science edition), 1995, 23(3): 11-15.
[19] 高明强, 孟献梁, 田军月, 等. 生物质型煤冷压成型工艺研究[J]. 能源技术与管理, 2014, 39(6): 13-16.
GAO M Q, MENG X L, TIAN J Y, et al.Study on cold pressing forming technology of biomass briquette[J]. Energy technology and management, 2014, 39(6): 13-16.
[20] 陈兴国, 黄文城, 张林, 等. 甘蔗渣冷压成型的影响因素研究[J]. 中国农机化学报, 2019, 40(12): 81-86.
CHEN X G, HUANG W C, ZHANG L, et al.Factors affecting cold pelleting of sugarcane bagasse[J]. Journal of Chinese agricultural mechanization, 2019, 40(12): 81-86.
[21] 张静, 郭玉明, 武翠卿, 等. 柠条热压成型工艺参数研究及燃料物性分析[J]. 太阳能学报, 2014, 35(10): 1842-1849.
ZHANG J, GUO Y M, WU C Q, et al.Study on process parameters of caragana korshinskii kom hot briquetting and analysis of physical properties for the solid fuel briquette[J]. Acta energiae solaris sinica, 2014, 35(10): 1842-1849.
[22] 张静, 刘正光, 郑德聪, 等. 基于马氏距离法的谷秆固体燃料成型工艺参数优化[J]. 太阳能学报, 2018, 39(6): 1658-1666.
ZHANG J, LIU Z G, ZHENG D C, et al.Optimization of molding process parameters of millet straw solid fuel based on Mahalanobis distance function[J]. Acta energiae solaris sinimca, 2018, 39(6): 1658-1666.

基金

国家燕麦荞麦产业体系重大专项(CARS-07-D-2)

PDF(2661 KB)

Accesses

Citation

Detail

段落导航
相关文章

/