基于无通讯的微电网储能系统主动SOH协同控制方案

吴青峰, 杨凯义, 于少娟, 刘立群, 陈昱同, 董佳

太阳能学报 ›› 2023, Vol. 44 ›› Issue (5) : 40-47.

PDF(2175 KB)
欢迎访问《太阳能学报》官方网站,今天是
PDF(2175 KB)
太阳能学报 ›› 2023, Vol. 44 ›› Issue (5) : 40-47. DOI: 10.19912/j.0254-0096.tynxb.2021-1413

基于无通讯的微电网储能系统主动SOH协同控制方案

  • 吴青峰1, 杨凯义1, 于少娟1, 刘立群1, 陈昱同1, 董佳2
作者信息 +

ACTIVE SOH COOPERATIVE CONTROL SCHEME OF MICROGRID ENERGY STORAGE SYSTEMS BASED ON NO-COMMUNICATION

  • Wu Qingfeng1, Yang Kaiyi1, Yu Shaojuan1, Liu Liqun1, Chen Yutong1, Dong Jia2
Author information +
文章历史 +

摘要

针对传统有功功率-频率(P-f)下垂控制无法实现交流微电网内分布式电池储能系统(DBESS)健康状态(SOH)均衡问题,提出一种基于无通讯的微电网DBESS主动SOH协同控制方案。该方案研究下垂控制调节SOH机理,将DBESS放电深度(DOD)信息加入传统下垂控制,使DBESS能根据SOH状态平移下垂曲线,调节DBESS逆变器输出有功功率,实现DBESS组间SOH 协同控制。建立小信号模型分析控制参数对系统稳定性的影响。该方案属于主动控制方案,具有无通讯和分流电阻、造价低的优点。通过仿真模型和实验平台对所提策略的可行性和有效性进行验证。

Abstract

Aiming at the problem that the traditional P-f droop control cannot achieve the state of health (SOH) balance of distributed battery energy storage systems (DBESS) in the AC microgrid, this paper proposes an active SOH cooperative control scheme for DBESS in the microgrid based on no communication. The scheme studies the mechanism of droop control to adjust SOH, and adds the depth of discharge (DOD) information of DBESS to the traditional droop control, so that DBESS can translate the droop curve according to the SOH state, adjust the output active power of DBESS inverter, and realize the SOH cooperative control between DBESS groups. A small signal model is established to analyze the influence of control parameters on system stability. This scheme is an active control scheme, which has the advantages of no communication and shunt resistance and low cost. The feasibility and effectiveness of the proposed strategy are verified by simulation model and experimental platform.

关键词

电池组 / 微电网 / 分散控制 / 健康状态 / 协同控制 / 放电深度

Key words

battery pack / microgrids / decentralized control / state of health / cooperative control / depth of discharge

引用本文

导出引用
吴青峰, 杨凯义, 于少娟, 刘立群, 陈昱同, 董佳. 基于无通讯的微电网储能系统主动SOH协同控制方案[J]. 太阳能学报. 2023, 44(5): 40-47 https://doi.org/10.19912/j.0254-0096.tynxb.2021-1413
Wu Qingfeng, Yang Kaiyi, Yu Shaojuan, Liu Liqun, Chen Yutong, Dong Jia. ACTIVE SOH COOPERATIVE CONTROL SCHEME OF MICROGRID ENERGY STORAGE SYSTEMS BASED ON NO-COMMUNICATION[J]. Acta Energiae Solaris Sinica. 2023, 44(5): 40-47 https://doi.org/10.19912/j.0254-0096.tynxb.2021-1413
中图分类号: TM46   

参考文献

[1] WU Q F, GUAN R Z, SUN X F, et al.SoC balancing strategy for multiple energy storage units with different capacities in islanded microgrids based on droop control[J]. IEEE journal of emerging and selected topics in power electronics, 2018, 6(4): 1932-1941.
[2] ALRAMLAWI M, LI P.Design optimization of a residential PV-Battery microgrid with a detailed battery lifetime estimation model[J]. IEEE transactions on industry applications, 2020, 56(2): 2020-2030.
[3] 吴青峰, 孙孝峰, 才玮琪, 等. 考虑SOC平衡的并网微电网能量供需平衡方案[J]. 太阳能学报, 2020, 41(11): 17-25.
WU Q F, SUN X F, CAI W Q, et al.Energy supply and demand balance scheme for grid-connected microgrid considering SOC balance[J]. Acta energiae solaris sinica, 2020, 41(11): 17-25.
[4] 周頔, 宋显华, 卢文斌, 等. 基于日常片段充电数据的锂电池健康状态实时评估方法研究[J]. 中国电机工程学报, 2019, 39(1): 105-110.
ZHOU D, SONG X H, LU W B, et al.Real-time SOH estimation algorithm for lithium-ion batteries based on daily segment charging data[J]. Proceedings of the CSEE, 2019, 39(1): 105-110.
[5] 韦佐霖, 陈民铀, 李杰, 等. 孤岛微网中分布式储能SOC和效率均衡控制策略[J]. 电力自动化设备, 2018, 38(4): 169-177.
WEI Z L, CHEN M Y, LI J, et al.Balancing control strategy of SOC and efficiency for distributed energy storage in islanded microgrid[J]. Electric power automation equipment, 2018, 38(4): 169-177.
[6] LI S, LI K, XIAO E, et al.Joint SoC and SoH estimation for zinc-nickel single-flow batteries[J]. IEEE transactions on industrial electronics, 2020, 67(10): 8484-8494.
[7] HE L, YANG Z, GU Y, et al.SoH-Aware reconfiguration in battery packs[J]. IEEE transactions on smart grid, 2018, 9(4): 3727-3735.
[8] 郭向伟, 韩素敏, 华显, 等. 基于电池健康状态的多目标自适应均衡控制策略研究[J]. 系统仿真学报, 2019, 31(9): 1883-1889.
GUO X W, HAN S M, HUA X, et al.Research on multi-objective adaptive equalization control strategy based on SOH[J]. Journal of system simulation, 2019, 31(9): 1883-1889.
[9] XIA Z Y, ABU QAHOUQ J A. State-of-Charge balancing of lithium-Ion batteries with state-of-health awareness capability[J]. IEEE transactions on industry applications, 2021, 57(1): 673-684.
[10] 冯夏云, 汪飞, 李玉菲, 等. 下垂控制逆变器输出阻抗外特性建模及参数敏感性分析[J]. 中国电机工程学报, 2020, 40(21): 7012-7022.
FENG X Y, WANG F, LI Y F, et al.Modelling and sensitivity analysis for the output impedance profile of droop controlled inverter[J]. Proceedings of the CSEE, 2020, 40(21): 7012-7022.
[11] SHI Y, SMITH K, ZANE R.Life prediction of large lithium-ion battery packs with active and passive balancing[C]//2017 American Control Conference (ACC), Seattle, WA, USA, 2017.
[12] MA Z, HAO T Q, GAO F, et al.Enhanced SOH balancing method of MMC battery energy storage system with cell equalization capability[C]//2018 IEEE Applied Power Electronics Conference and Exposition (APEC), San Antonio, TX, USA, 2018.
[13] 李楠, 高峰. 基于储能型模块化多电平系统的多时间尺度控制策略[J]. 电工技术学报, 2017, 32(17): 47-56.
LI N, GAO F.Multi-time scale operational principle for battery integrated modular multilevel converter[J]. Transactions of China Electrotechnical Society, 2017, 32(17): 47-56.
[14] PROBSTL A, PARK S, NARAYANASWAMY S, et al.SOH-Aware active cell balancing strategy for high power battery packs[C]//2018 Design, Automation & Test in Europe Conference & Exhibition (DATE), Dresden, Germany, 2018.
[15] SHILI S, HIJAZI A, SARI A, et al.Balancing circuit new control for supercapacitor storage system lifetime maximization[J]. IEEE transactions on power electronics, 2017, 32(6): 4939-4948.
[16] SIFAT C, MOHAMMAD N S, YILMAZ S.An integrated state of health (SOH) balancing method for lithium-ion battery cells[C]//2019 IEEE Energy Conversion Congress and Exposition(ECCE), Baltimore, MD, USA, 2019.
[17] MA Z, GAO F, GU X, et al.Multilayer SOH equalization scheme for MMC battery energy storage system[J]. IEEE transactions on power electronics, 2020, 35(12): 13514-13527.
[18] LU X N, SUN K, GUERRERO J M, et al.State-of-charge balance using adaptive droop control for distributed energy storage systems in DC microgrid application[J]. IEEE transactions on industrial electronics, 2014, 61(6): 2804-2815.
[19] KIM I S.A technique for estimating the state of health of lithium batteries through a dual-sliding-mode observer[J]. IEEE transactions on power electronics, 2010, 25(4): 1013-1022.
[20] LI N, GAO F, HAO T Q, et al.SOH balancing control method for the MMC battery energy storage system[J]. IEEE transactions on industrial electronics, 2018, 65(8): 6581-6591.
[21] DALLINGER D.Plug-in electric vehicles integrating fluctuating renewable electricity[M]. Kassel: Kassel Univ ersity Press, 2013: 58-64.
[22] TAN K T, PENG X Y, SO P L, et al.Centralized control for parallel operation of distributed generation inverters in microgrids[J]. IEEE transactions on smart grid, 2012, 3(4): 1977-1987.
[23] 吴青峰, 孙孝峰, 王雅楠, 等. 基于分布式下垂控制的微电网分布式储能系统 SOC 平衡策略[J]. 电工技术学报, 2018, 33(6): 1247-1256.
WU Q F, SUN X F, WANG Y N, et al.A distributed control strategy for SOC balancing of distributed energy storage systems in microgrid[J]. Transactions of China Electrotechnical Society, 2018, 33(6): 1247-1256.

基金

山西省高等学校科技创新项目(2021L289); 山西省研究生教育创新项目(2022Y693); 太原科技大学博士科研启动基金(20202005); 来晋优秀博士奖励资金项目(20202007)

PDF(2175 KB)

Accesses

Citation

Detail

段落导航
相关文章

/