不同加热方式下热管接收器传热性能研究

张维蔚, 段林作, 袁东辉, 张子敬, 巴旭阳, 田瑞

太阳能学报 ›› 2023, Vol. 44 ›› Issue (4) : 492-498.

PDF(2090 KB)
欢迎访问《太阳能学报》官方网站,今天是
PDF(2090 KB)
太阳能学报 ›› 2023, Vol. 44 ›› Issue (4) : 492-498. DOI: 10.19912/j.0254-0096.tynxb.2021-1422

不同加热方式下热管接收器传热性能研究

  • 张维蔚1, 段林作1, 袁东辉2, 张子敬1, 巴旭阳1, 田瑞1,3
作者信息 +

STUDY ON HEAT TRANSFER PERFORMANCE OF HEAT PIPERECEIVER BASED ON DIFFERENT HEATING MODES

  • Zhang Weiwei1, Duan Linzuo1, Yuan Donghui2, Zhang Zijing1, Ba Xuyang1, Tian Rui1,3
Author information +
文章历史 +

摘要

为研究不同加热方式下热管的传热性能,该文设计并搭建一套具有非均匀加热功能的热管传热性能实验测试台架。实验测试加热方式(均匀加热、上表面加热、下表面加热)、加热功率和放置倾角对热管传热性能的影响。实验结果表明:加热功率和放置倾角一定,均匀加热时热管热效率最大,下表面加热时次之,上表面加热时最小;下表面加热时,热管总传热热阻最小,蒸发段传热系数最大,外壁面平均温度最低。无论采用哪种加热方式,随着放置倾角的增大,热管热效率均逐渐减小,总传热热阻逐渐增大,蒸发段传热系数逐渐减小;蒸发段液池区域外壁面温度均明显高于液膜区域;液膜区域,沿高度方向外壁面温度变化较小。

Abstract

In order to study the influence of different heating modes on heat pipe heat transfer performance, this paper designed and built a set of two-phase closed thermosyphon (TPCT) heat pipe heat transfer performance experimental test bench with non-uniform heating function. The experiment tested the influence of the heating method (Uniform heating, Upper surface heating, Lower surface heating), heating power and placement angle on TPCT heat pipe heat transfer performance. The experimental results show that under certain conditions of heating power and placement angle, TPCT heat pipe has the largest thermal efficiency when uniformly heated, followed by lower surface heating. TPCT heat pipe has the lowest thermal efficiency when the upper surface is heated. Compared with other heating modes, when the lower surface is heated, the total heat transfer resistance of the heat pipe is the smallest, the heat transfer coefficient of the evaporation section is the largest, and the average temperature of the outer wall is the lowest. When the upper surface is heated and uniformly heated, there is little difference in the temperature of the outer wall. No matter which heating method is used, with the increase of placement angle, the thermal efficiency of heat pipe decreases gradually, the total heat transfer resistance increases gradually, and the heat transfer coefficient of evaporator decreases gradually. The outer wall temperature of the liquid pool area in the evaporator is significantly higher than that in the liquid film area. In the liquid film area, the temperature of the outer wall surface changes little along the height direction.

关键词

太阳能集热器 / 非均匀加热 / 热管 / 热效率 / 传热热阻 / 传热系数

Key words

solar collector / non-uniform heating / heat pipes / thermal efficiency / heat transfer resistance / heat transfer coefficients

引用本文

导出引用
张维蔚, 段林作, 袁东辉, 张子敬, 巴旭阳, 田瑞. 不同加热方式下热管接收器传热性能研究[J]. 太阳能学报. 2023, 44(4): 492-498 https://doi.org/10.19912/j.0254-0096.tynxb.2021-1422
Zhang Weiwei, Duan Linzuo, Yuan Donghui, Zhang Zijing, Ba Xuyang, Tian Rui. STUDY ON HEAT TRANSFER PERFORMANCE OF HEAT PIPERECEIVER BASED ON DIFFERENT HEATING MODES[J]. Acta Energiae Solaris Sinica. 2023, 44(4): 492-498 https://doi.org/10.19912/j.0254-0096.tynxb.2021-1422
中图分类号: TK512   

参考文献

[1] JAFARI D, FRANCO A, FILIPPESCHI S, et al.Two-phase closed thermosyphons: a review of studies and solar applications[J]. Renewable and sustainable energy reviews, 2016, 53(1): 575-593.
[2] SHAFIEIAN A, KHIADANI M, NOSRATI A.Strategies to improve the thermal performance of heat pipe solar collectors in solar systems: a review[J]. Energy conversion and management, 2019, 183: 307-331.
[3] 张维蔚, 王甲斌, 田瑞, 等. 热管式真空管太阳能聚光集热系统传热特性分析[J]. 农业工程学报, 2018, 34(3): 202-209.
ZHANG W W, WANG J B, TIAN R, et al.Analysis of heat transfer characteristics for parabolic trough solar collector system with heat-pipe evacuated tube[J]. Transactions of the Chinese Society of Agricultural Engineering, 2018, 34(3): 202-209.
[4] FATHABADI H.Novel low-cost parabolic trough solar collector with TPCT heat pipe and solar tracker: performance and comparing with commercial flat-plate and evacuated tube solar collectors[J]. Solar energy, 2020, 195: 210-222.
[5] NKWETTA D N, SMYTH M, HAGHIGHAT F, et al.Experimental performance evaluation and comparative analyses of heat pipe and direct flow augmented solar collectors[J]. Applied thermal engineering, 2013, 60(1-2): 225-233.
[6] WANG Y F, ZHU Y Z, CHEN H J, et al.Performance analysis of a novel sun-tracking CPC heat pipe evacuated tubular collector[J]. Applied thermal engineering, 2015, 87: 381-388.
[7] BRAHIM T, DHAOU M H, JEMNI A.Theoretical and experimental investigation of plate screen mesh heat pipe solar collector[J]. Energy conversion and management, 2014, 87: 428-438.
[8] 钟帅, 裴刚, 王其梁, 等. 带遮热板热管式真空管集热器的分析[J]. 太阳能学报, 2021, 42(5): 295-301.
ZHONG S, PEI G, WANG Q L, et al.Exergy analyses of heat pipe evacuated tube collector with heat shield[J]. Acta energiae solaris sinica, 2021, 42(5): 295-301.
[9] WEI L J, YUAN D Z, TANG D W, et al.A study on a flat-plate type of solar heat collector with an integrated heat pipe[J]. Solar energy, 2013, 97: 19-25.
[10] LI S F, LIU Z H, SHAO Z X, et al.Performance study on a passive solar seawater desalination system using multi-effect heat recovery[J]. Applied energy, 2018, 213: 343-352.
[11] ELSHENITI M B, KOTB A, ELSAMNI O.Thermal performance of a heat-pipe evacuated-tube solar collector at high inlet temperatures[J]. Applied thermal engineering, 2019, 154: 315-325.
[12] GEDIK E.Experimental investigation of the thermal performance of a two-phase closed thermosyphon at different operating conditions[J]. Energy and buildings, 2016, 127: 1096-1107.
[13] ALAMMAR A A, AL-DADAH R K, MAHMOUD S M. Experimental investigation of the influence of the geyser boiling phenomenon on the thermal performance of a two-phase closed thermosyphon[J]. Journal of cleaner production, 2018, 172: 2531-2543.
[14] ALAMMAR A A, AL-DADAH R K, MAHMOUD S M. Effect of inclination angle and fill ratio on geyser boiling phenomena in a two-phase closed thermosiphon-experimental investigation[J]. Energy conversion and management, 2018, 156: 150-166.
[15] JIANG F, SHEN Y, JING W Y, et al.Effect of evaporation section setting on the thermal performance of a closed thermosyphon combined with fluidized bed heat transfer technology[J]. Powder technology, 2020, 373: 569-580.
[16] PAYAKARUK T, TERDTOON P, RITTHIDECH S.Correlations to predict heat transfer characteristics of an inclined closed two-phase thermosyphon at normal operating conditions[J]. Applied thermal engineering, 2000, 20(9): 781-790.
[17] GABRIELA H, ANGEL H.Heat transfer characteristics of a two-phase closed thermosyphons using nanofluids[J]. Experimental thermal and fluid science, 2010, 35(3): 550-557.
[18] SARAFRAZ M M, HORMOZI F, PEYGHAMBARZADEH S M.Thermal performance and efficiency of a thermosyphon heat pipe working with a biologically ecofriendly nanofluid[J]. International communications in heat and mass transfer, 2014, 57: 297-303.
[19] KIM Y, SHIN D H, KIM J S, et al.Boiling and condensation heat transfer of inclined two-phase closed thermosyphon with various filling ratios[J]. Applied thermal engineering, 2018, 145: 328-342.
[20] XU Q, LIU L, FENG J X, et al.A comparative investigation on the effect of different nanofluids on the thermal performance of two-phase closed thermosyphon[J]. International journal of heat and mass transfer, 2020, 149: 119189.
[21] SOLOMON A B, ROSHAN R, VINCENT W, et al.Heat transfer performance of an anodized two-phase closed thermosyphon with refrigerant as working fluid[J]. International journal of heat and mass transfer, 2015, 82: 521-529.
[22] OZSOY A, CORUMLU V.Thermal performance of a thermosyphon heat pipe evacuated tube solar collector using silver-water nanofluid for commercial applications[J]. Renewable energy, 2018, 122: 26-34.
[23] HUSSEIN H M S, MOHAMAD M A, EL-ASFOURI A S. Theoretical analysis of laminar-film condensation heat transfer inside inclined wickless heat pipes flat-plate solar collector[J]. Renewable energy, 2001, 23(3-4): 525-535.
[24] EL-GENK M S, SABER H H. Heat transfer correlations for small, uniformly heated liquid pools[J]. International journal of heat and mass transfer, 1998, 41(2): 261-274.
[25] EL-GENK M S, SABER H H. Heat transfer correlations for liquid film in the evaporator of enclosed, gravity-assisted thermosyphons[J]. Journal of heat transfer, 1998, 120(2): 477-484.
[26] JIAO B, QIU L M. ZHANG X B.et al.Investigation on the effect of filling ratio on the steady-state heat transfer performance of a vertical two-phase closed thermosyphon[J]. Applied thermal engineering, 2008, 28(11): 1417-1426.

基金

内蒙古自治区高校科研项目(NJZZ19070); 内蒙古自治区科技重大专项(2021ZD0030-02); 国家自然科学基金(51966011); 内蒙古电力(集团)有限责任公司内蒙古电力科学研究院分公司项目(510241200024)

PDF(2090 KB)

Accesses

Citation

Detail

段落导航
相关文章

/