基于BAS改进PSO算法对PEMFC温度的控制

陈际, 袁守利, 刘志恩

太阳能学报 ›› 2023, Vol. 44 ›› Issue (5) : 67-73.

PDF(1912 KB)
欢迎访问《太阳能学报》官方网站,今天是
PDF(1912 KB)
太阳能学报 ›› 2023, Vol. 44 ›› Issue (5) : 67-73. DOI: 10.19912/j.0254-0096.tynxb.2021-1426

基于BAS改进PSO算法对PEMFC温度的控制

  • 陈际1,2, 袁守利1,2, 刘志恩1,2
作者信息 +

TEMPERATURE CONTROL OF PEMFC BASED ON BAS IMPROVED PSO ALGORITHM

  • Chen Ji1,2, Yuan Shouli1,2, Liu Zhien1,2
Author information +
文章历史 +

摘要

有效的质子交换膜燃料电池(PEMFC)热管理是提升其可靠性和耐久性的关键因素之一,该文通过控制PWM占空比来控制散热强度进而控制电池温度。在控制策略上,选用经改进的粒子群算法优化的模糊PID作为控制器,最后经Matlab/Simulink搭建的电堆温度模型仿真表明:该方法能有效解决PEMFC温度控制时变量多、强耦合的难题,使相对于传统的PID控制超调量下降57%,响应时间缩短27.8%,取得了响应速度快、超调小和鲁棒性强的控制效果。

Abstract

Effective proton exchange membrane fuel cell(PEMFC)thermal management is one of the key factors that improve the reliability and durability of fuel cell batteries. This article controls the temperature of the electric stack by controlling the duty cycle of the fan. In the control method, the method for improving the PSO optimization fuzzy PID control; the temperature model that is finally built by Matlab / Simulink is simulated: the method can effectively solve the time-variables, large lag and uncertainty of PEMFC temperature control. A strong coupling problem makes a decrease of 57% relative to traditional PID control overdrawl, and the response time is shortened to 27.8%, and the response speed is fast, robust, and less than a small control effect.

关键词

粒子群算法 / 热管理 / 模糊控制 / PID控制 / 质子交换膜燃料电池

Key words

particle swarm optimization / thermal management / fuzzy control / PID control / PEMFC

引用本文

导出引用
陈际, 袁守利, 刘志恩. 基于BAS改进PSO算法对PEMFC温度的控制[J]. 太阳能学报. 2023, 44(5): 67-73 https://doi.org/10.19912/j.0254-0096.tynxb.2021-1426
Chen Ji, Yuan Shouli, Liu Zhien. TEMPERATURE CONTROL OF PEMFC BASED ON BAS IMPROVED PSO ALGORITHM[J]. Acta Energiae Solaris Sinica. 2023, 44(5): 67-73 https://doi.org/10.19912/j.0254-0096.tynxb.2021-1426
中图分类号: TM911.42   

参考文献

[1] 卫超强, 武志斐. 不同参数对质子交换膜燃料电池输出特性的影响[J]. 现代制造工程, 2021(4): 62-67.
WEI C Q, WU Z F, et al.Effects of different parameters on the output characteristics of proton exchange membrane fuel cell[J]. Modern manufacturing engineering, 2021(4): 62-67.
[2] 高建华, 刘永峰, 裴普成, 等. 温度波动对质子交换膜燃料电池的影响[J]. 可再生能源, 2017, 35(8): 1150-1155.
GAO J H, LIU Y F, PEI F C, et al.An analysis of the temperature fluctuation effect on proton exchange membrane fuel cell[J]. Renewable energy resources, 2017, 35(8): 1150-1155.
[3] 彭赟, 欧阳家俊, 阙海丹, 等. 考虑环境温湿度的空冷PEMFC最佳工作温度研究与控制[J]. 太阳能学报, 2016, 37(6): 1423-1430.
PENG Y, OUYANG J J, QUE H D, et al.Study and control of optimal operating temperature in air-cooled PEMFC based on certain ambient temperature and humidity[J]. Acta energiae solaris sinica, 2016, 37(6): 1423-1430
[4] 褚磊民, 卫东, 陆勇军, 等. 空冷型质子交换膜燃料电池电堆温度控制系统设计[J]. 工业控制计算机, 2009, 22(10): 18-20.
CHU L M, WEI D, LU Y J, et al.Design for temperature control system of air-cooling PEMFC stack[J]. Industrial control computer, 2009, 22(10): 18-20.
[5] 谢雨岑, 邹见效, 彭超, 等. 基于变论域模糊增量理论的质子交换膜燃料电池温度控制[J]. 控制理论与应用, 2019, 36(3): 428-435.
XIE Y C, ZOU J X, PENG C, et al.Temperature control of PEMFC system based on variable universe fuzzy incremental theory[J]. Control theory and applications, 2019, 36(3): 428-435.
[6] 陈雪娇, 戚志东, 李蕾, 等. 空冷型PEMFC电堆温度建模及改进GPC控制[J]. 电源技术, 2012, 36(10): 1463-1466, 1495.
CHEN X J, QI Z D, LI L, et al.Temperature modeling of air-breathing PEMFC stack and improved GPC control[J]. Chinese journal of power sources, 2012, 36(10): 1463-1466, 1495.
[7] 许志梅. 质子交换膜燃料电池的温度控制与设计[D]. 南京: 南京理工大学, 2010.
XU Z M.Temperature control and design of proton exchange membrane fuel cell[D]. Nanjing: Nanjing University of Science and Technology, 2010.
[8] CHENG S L, FANG C, XU L F, et al.Model-based temperature regulation of a PEM fuel cell system on a city bus[J]. International journal of hydrogen energy, 2015, 40(39): 13566-13575.
[9] POHJORANTA A, HALINEN M, PENNANEN J, et al.Model predictive control of the solid oxide fuel cell stack temperature with models based on experimental data[J]. Journal of power sources, 2015, 277: 239-250.
[10] 柯超, 甘屹, 王胜佳, 等. 基于温度效应的空冷型质子交换膜燃料电池动态建模[J]. 太阳能学报, 2021, 42(8): 488-495.
KE C, GAN Y, WANG S J, et al.Dynamic modeling of air-cooled proton exchange membrane fuel cell based on temperature effect[J]. Acta energiae solaris sinica, 2021, 42(8): 488-495.
[11] ZHAO X Q, LI Y K, LIU Z X, et al.Thermal management system modeling of a water-cooled proton exchange membrane fuel cell[J]. International journal of hydrogen energy, 2015, 40(7): 3048-3056.
[12] 仝家朋. 基于改进天牛须算法的主汽温控制系统PID参数优化[J]. 仪器仪表用户, 2021, 28(3): 93-96, 9.
TONG J P.Optimization of PID parameters for main steam temperature in power plant based on improved beetle antennae search[J]. Electronic instrumentation customers, 2021, 28(3): 93-96, 9.
[13] 李雪吉, 程海鹰. 胡志勇, 等. 粒子群优化模糊PID在燃烧器温度控制中的应用[J]. 机械科学与技术, 2021, 40(2): 276-282.
LI X J, CHENG H Y, HU Z Y, et al.Application of particle swarm optimization fuzzy PID in burner temperature control[J]. Mechanical science and technology for aerospace engineering, 2021, 40(2): 276-282.
[14] 杨世勇, 徐国林. 模糊控制与PID控制的对比及其复合控制[J]. 自动化技术与应用, 2011, 30(11): 21-25.
YANG S Y, XU G L.Comparison and composite of fuzzy control and PID control[J]. Techniques of automation and applications, 2021, 30(11): 21-25.

基金

先进能源科学与技术广东省实验室佛山分中心开放基金项目(XHD2020-003)

PDF(1912 KB)

Accesses

Citation

Detail

段落导航
相关文章

/