风电机组叶片故障仿真与状态判别研究

高峰, 张鸿, 许琳, 刘俊承

太阳能学报 ›› 2023, Vol. 44 ›› Issue (4) : 52-59.

PDF(1704 KB)
欢迎访问《太阳能学报》官方网站,今天是
PDF(1704 KB)
太阳能学报 ›› 2023, Vol. 44 ›› Issue (4) : 52-59. DOI: 10.19912/j.0254-0096.tynxb.2021-1434

风电机组叶片故障仿真与状态判别研究

  • 高峰, 张鸿, 许琳, 刘俊承
作者信息 +

RESEARCH ON FAULT SIMULATION AND STATE JUDGMENT OF WIND TURBINE BLADES

  • Gao Feng, Zhang Hong, Xu Lin, Liu Juncheng
Author information +
文章历史 +

摘要

该文利用Bladed软件模拟叶片覆冰和破损故障,通过对比和分析风电机组叶片故障与正常时的运行数据,发现叶片故障状态时的机组运行参数变化特征;然后利用叶片振动信号,基于叶片工作模态分析理论识别出叶片模态参数,根据模态参数的变化揭示了两种故障对叶片振动影响的区别;最后将所识别的叶片模态参数与风电机组的运行参数组成多源数据,采用LightGBM框架下的分类决策树算法实现了对叶片故障状态的有效判断和识别。

Abstract

Blade icing and damage faults were simulated by the software Bladed in this paper. By comparing and analyzing the operation data of wind turbine under blades normal and fault conditions, the change characteristics of operation data under the condition of blade failure was found. Then, the blade vibration signals were used to identify the blade modal parameters based on the blade operational modal analysis theory. According to the variation of blade modal parameters, the fault difference between blade icing and damage on blade vibration was revealed. Finally, the identified blade modal parameters and wind turbine operation parameters are combined into multi-source data. The classification decision tree algorithm under the framework of LightGBM (Light Gradient Boosting Machine) is used to identify the blade fault state effectively.

关键词

风力发电机组叶片 / 损伤检测 / 故障分析 / 学习算法 / 覆冰 / LightGBM

Key words

wind turbine blade / damage detection / failure analysis / learning algorithms / icing / LightGBM

引用本文

导出引用
高峰, 张鸿, 许琳, 刘俊承. 风电机组叶片故障仿真与状态判别研究[J]. 太阳能学报. 2023, 44(4): 52-59 https://doi.org/10.19912/j.0254-0096.tynxb.2021-1434
Gao Feng, Zhang Hong, Xu Lin, Liu Juncheng. RESEARCH ON FAULT SIMULATION AND STATE JUDGMENT OF WIND TURBINE BLADES[J]. Acta Energiae Solaris Sinica. 2023, 44(4): 52-59 https://doi.org/10.19912/j.0254-0096.tynxb.2021-1434
中图分类号: TM614   

参考文献

[1] YANG B, SUN D B.Testing, inspecting and monitoring technologies for wind turbine blades: a survey[J]. Renewable and sustainable energy reviews, 2013, 22: 515-526.
[2] DU Y, ZHOU S X, JING X J, et al.Damage detection techniques for wind turbine blades: a review[J]. Mechanical systems and signal processing, 2020, 141: 106445.
[3] 龚妙, 李录平, 刘瑞, 等. 基于运行参数特征的风力机叶片覆冰诊断方法[J]. 动力工程学报, 2019, 39(3): 214-219.
GONG M, LI L P, LIU R, et al.Diagnosis of ice accretion on wind turbine blades based on the features of operating parameters[J]. Journal of Chinese Society of Power Engineering, 2019, 39(3): 214-219.
[4] YUN H G, ZHANG C K, HOU C G, et al.An adaptive approach for ice detection in wind turbine with inductive transfer learning[J]. IEEE access, 2019, 7: 122205-122213.
[5] CHEN L T, XU G H, ZHANG Q, et al.Learning deep representation of imbalanced SCADA data for fault detection of wind turbines[J]. Measurement, 2019, 139: 370-379.
[6] SALEH S A, AHSHAN R, MOLONEY C R.Wavelet-based signal processing method for detecting ice accretion on wind turbines[J]. IEEE transactions on sustainable energy, 2012, 3(3): 585-597.
[7] MUÑOZ C Q G, MÁRQUEZ F P G, TOMÁS G M S. Ice detection using thermal infrared radiometry on wind turbine blades[J]. Measurement, 2016, 93: 157-163.
[8] RIZK P, SALEH N A, YOUNES R, et al.Hyperspectral imaging applied for the detection of wind turbine blade damage and icing[J]. Remote sensing applications: society and environment, 2020, 18: 100291.
[9] REZAMAND M, KORDESTANI M, CARRIVEAU R, et al.A new hybrid fault detection method for wind turbine blades using recursive PCA and wavelet-based PDF[J]. IEEE sensors journal, 2020, 20(4): 2023-2033.
[10] WANG L, ZHANG Z J, XU J, et al.Wind turbine blade breakage monitoring with deep auto encoders[J]. IEEE transactions on smart grid, 2018, 9(4): 2824-2833.
[11] HWANG S, AN Y K, SOHN H.Continuous line laser thermography for damage imaging of rotating wind turbine blades[J]. Procedia engineering, 2017, 188: 225-232.
[12] YU Y J, CAO H, YAN X Y, et al.Defect identification of wind turbine blades based on defect semantic features with transfer feature extractor[J]. Neurocomputing, 2020, 376: 1-9.
[13] TANG J L, SOUA S, MARES C, et al.An experimental study of acoustic emission methodology for inservice condition monitoring of wind turbine blades[J]. Renewable energy, 2016, 99: 170-179.
[14] XU D, LIU P F, CHEN Z P, et al.Achieving robust damage mode identification of adhesive composite joints for wind turbine blade using acoustic emission and machine learning[J]. Composite structure, 2020, 236: 111840.
[15] OH K Y, PARK J Y, LEE J S, et al.A novel method and its field tests for monitoring and diagnosing blade health for wind turbines[J]. IEEE transactions on instrumentation and measurement, 2015, 64(6): 1726-1733.
[16] SIERRA-PÉREZ J, TORRES-ARREDONDO M A, GÜEMES A. Damage and nonlinearities detection in wind turbine blades based on strain field pattern recognition. FBGs, OBR and strain gauges comparison[J]. Composite structures, 2016, 135: 156-166.
[17] DOWNEY A, UBERTINI F, LAFLAMME S.Algorithm for damage detection in wind turbine blades using a hybrid dense sensor network with feature level data fusion[J]. Journal of wind engineering and industrial aerodynamics, 2017, 168: 288-296.
[18] GONZÁLEZ A G, FASSOIS S D. A supervised vibration-based statistical methodology for damage detection under varying environmental conditions & its laboratory assessment with a scale wind turbine blade[J]. Journal of sound and vibration, 2016, 366: 484-500.
[19] JIANG S C, LIN P, CHEN Y M, et al.Mixed-signal extraction and recognition of wind turbine blade multiple-area damage based on improved Fast-ICA[J]. Optics, 2019, 179: 1152-1159.
[20] TCHERNIAK D, MOLGAARD L L.Active vibration-based structural health monitoring system for wind turbine blade: demonstration on an operating Vestas V27 WT[J]. Structural health monitoring, 2017, 16(5): 536-550.
[21] GARCÍA D, TCHERNIAK D. An experimental study on the data-driven structural health monitoring of large wind turbine blades using a single accelerometer and actuator[J]. Mechanical systems and signal processing, 2019, 127: 102-119.

基金

国家重点研发计划(2020YFB1506600; 2020YFB1506604)

PDF(1704 KB)

Accesses

Citation

Detail

段落导航
相关文章

/