采用Scheil方程和四探针法、霍尔效应技术、紫外-可见光吸收光谱以及XRD技术分别模拟和测试太阳能硅锭的杂质分布、电阻率、载流子浓度、带隙以及晶体结构,结果表明:若硅料中施主杂质原子浓度小于受主杂质的0.39倍,铸造的p型硅锭不会出现极性反转。由于极性相反杂质间的抵偿效应,在硅锭极性反转处形成p-n结区,少子寿命和体电阻率均达到最大值,且硅锭的晶体结构未发生改变,带隙比特征硅锭的带隙降低25.89%,对此段硅锭切片,可省略后续硅片的“磷扩散”过程。利用掺杂剂抵偿技术可制备高效率和低成本的晶硅太阳电池。
Abstract
The Scheil equation, four-probe method, Hall effect technology, ultraviolet-visible light absorption spectroscopy, and XRD technique are employed to simulate and test the impurity distribution, resistivity, carrier concentration, band gap and crystal structure of solar-grade silicon ingot, respectively. The results show that if the atomic concentration of the donor impurity in silicon material is less than 0.39 times that of the acceptor impurity, the casted p-type silicon ingots do not occur the polarity inversion. Due to the compensation effect between the impurities of opposite polarity, the p-n junction region in which both the minority carrier lifetime and bulk resistivity reach the maximum value, is formed in the polarity inversion region of the silicon ingot. Meanwhile, the crystal structure of the ingot does not be changed, and the band gap is decreased by 25.89% compared with the characteristic silicon ingot. For the polarity inversion region of silicon ingot, subsequent “phosphorus diffusion”process of the as-cut silicon wafers can be omitted. Employing the techniques of dopant compensation can fabricate high efficiency and low-cost silicon solar cells.
关键词
太阳电池 /
载流子迁移率 /
少子寿命 /
抵偿效应 /
Scheil方程 /
太阳能级硅
Key words
solar cells /
carrier mobility /
minority carrier lifetime /
compensation effect /
Scheil equation /
solar-grade silicon
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] NÆRLAND T U, BERNARDINI S, STODDARD N, et al. Comparison of iron-related recombination centers in boron, gallium, and indium doped silicon analyzed by defect parameter contour maping[J]. Energy procedia, 2017, 124: 138-145.
[2] HOSHIKAWA T, TAISHI T, OISHI S, et al.Investigation of methods for doping CZ silicon with gallium[J]. Journal of crystal growth, 2005, 275(1-2): e2141-e2145.
[3] FOURMOND E, FORSTER M, EINHAUS R, et al.Electrical properties of boron, phosphorus and gallium co-doped silicon[J]. Energy procedia, 2011, 8: 349-354.
[4] DHAMRIN M, SAITOH T, YAMAGA I, et al.Compensation effect of donor and acceptor impurities co-doping on the electrical properties of directionally solidified multicrystalline silicon ingots[J]. Journal of crystal growth, 2009, 311(3): 773-775.
[5] FORSTER M, DEHESTRU B, THOMAS A, et al.Compensation engineering for uniform n-type silicon ingots[J]. Solar energy materials and solar cells, 2013, 111: 146-152.
[6] LUO H Z, HE L, LEI Q, et al.Study on preparation and properties of boron-gallium co-doped multicrystalline ingots[J]. Journal of crystal growth, 2020, 546: 125784.
[7] BETEKBAEV A A, MUKASHEV B N, PELISSIER L, et al.Doping optimization of solar grade(SOG) silicon ingots for increasing ingot yield and cell efficiency[J]. Modern electronic materials, 2016, 2(3): 61-65.
[8] XIAO C Q, YANG D R, YU X G, et al.Effect of dopant compensation on the performance of Czochralski silicon solar cells[J]. Solar energy materials and solar cells, 2012, 101: 102-106.
[9] YUAN S, YU X G, HU D L, et al.Defect control based on constitutional super cooling effect in cast multi- crystalline silicon: boron-indium co-doping[J]. Solar energy materials and solar cells, 2019, 203: 110189.
[10] HUANG F, CHEN R R, GUO J J, et al.Electrical resistivity distribution of silicon ingot grown by cold crucible continuous melting and directional solidification[J]. Materials science in semiconductor processing, 2014, 23: 14-19.
[11] MAO X, YU X G, YUAN S, et al.Recombination activity of sub-grain boundaries and dislocation arrays in quasi-single crystalline silicon[J]. Applied physics express, 2019, 12: 051012.
[12] SUN J F, HE Q X, BAN B Y, et al.Effect of Sn doping on improvement of minority carrier lifetime of Fe contaminated p-type multi-crystalline Si ingot[J]. Journal of crystal growth, 2017, 458: 66-71.
[13] 孟庆超, 张运锋, 刘磊, 等. 准单晶硅铸锭过程中固液相变界面形状的控制[J]. 太阳能学报, 2015, 36(7): 1545-1549.
MENG Q C, ZHANG Y F, LIU L, et al.Melt-solid interface shape control in the casting process for quasi-single crystalline silicon ingots[J]. Acta energiae solaris sinica, 2015, 36(7): 1545-1549.
[14] HALLAM B J, WENHAM S R, HAMER P G, et al.Hydrogen passivation of B-O defects in Czochralski silicon[J]. Energy procedia, 2013, 38: 561-570.
[15] LIMA M L, MARTORANO M A, NETO J B F. Macro- segregation of impurities in a metallurgical silicon ingot after transient directional solidification[J]. Materials research, 2017, 20(4): 1129-1135.
[16] GRANT N E, SCOWCROFT J R, POINTON A I, et al.Lifetime instabilities in gallium doped mono crystalline PERC silicon solar cells[J]. Solar energy materials and solar cells, 2020, 206: 110299.
[17] LINDROOS J, YLI-KOSKI M, HAARAHILTUNEN A, et al.Light-induced degradation in copper-contaminated allium-doped silicon[J]. Physica status solidi(RRL), 2013, 7(4): 262-264.
[18] FUNG T H, KIM M, CHEN D, et al.A four-state kinetic model for the carrier-induced degradation in multi-crystalline silicon: introducing the reservoir state[J]. Solar energy materials and solar cells, 2018, 184: 48-56.
[19] NARUSHIMA T, YAMASHITA A, OUCHI C, et al.Solubilities and equilibrium distribution coefficients of oxygen and carbon in silicon[J]. Materials transactions, 2002, 43(8): 2120-2124.
[20] MOUMNI B, JABALLAH A B, AOUIDA S, et al.Study of oxygen clustering in Czochralski silicon at 450 ℃-800 ℃: correlation with thermal donors formation[J]. Physica status solidi C, 2011, 8(3): 666-669.
[21] GLUNZ S W, REIN S, KNOBLOCH J, et al.Comparison of Boron-and gallium-doped p-type Czochralski silicon for photovoltaic application[J]. Progress in photovoltaics, 1999, 7(6): 463-469.
[22] ZHOU C L, JI F X, CHENG S Z, et al.Light and elevated temperature induced degradation in B-Ga co-doped cast mono Si PERC solar cells[J]. Solar energy materials and solar cells, 2020, 211: 110508.
[23] BERTHOD C, STRANDBERG R, ODDEN J O.Temperature coefficients of compensated silicon solar cells-influence of ingot position and blend-in-ratio[J]. Energy procedia, 2015, 77: 15-20.
基金
国家自然科学基金(118040055); 河南省高校重点科研计划项目(20A480001); 安阳市科技计划项目(2021C01GX008)