基于LBM-MFLS耦合模型的含水层渗流-传热过程模拟

马玖辰, 吕林海, 杨杰, 崔阿凤, 魏璠

太阳能学报 ›› 2023, Vol. 44 ›› Issue (5) : 30-39.

PDF(4488 KB)
欢迎访问《太阳能学报》官方网站,今天是
PDF(4488 KB)
太阳能学报 ›› 2023, Vol. 44 ›› Issue (5) : 30-39. DOI: 10.19912/j.0254-0096.tynxb.2021-1450

基于LBM-MFLS耦合模型的含水层渗流-传热过程模拟

  • 马玖辰1,2, 吕林海1, 杨杰1, 崔阿凤1, 魏璠1,2
作者信息 +

NUMERICAL SIMULATION OF FLUID SEEPAGE AND HEAT TRANSFER IN AQUIFER WITH LBM-MFLS COUPLED MODEL

  • Ma Jiuchen1,2, Lyu Linhai1, Yang Jie1, Cui Afeng1, Wei Fan1,2
Author information +
文章历史 +

摘要

基于有限长移动线热源(MFLS)传热模型,根据时空叠加原理推导出含水层非稳态过余温度解析解ΔTMFLS;在格子单松弛模型(LBGK)的演化方程中引入离散力源项,建立格子Boltzmann法(LBM)与ΔTMFLS的耦合计算模型。通过热响应实验,验证耦合计算模型与求解方法的正确性。研究表明,在不同计算工况下含水层各区域的渗流速度均具有启动—下降—回升—稳定的4个连续阶段。随着含水层孔隙率的降低,虚拟流体粒子动能损失增大,渗流速度降幅增大,回升过程缓慢。然而随着进水流速的提高,孔隙率的变化对于含水层水动力场演化过程的影响程度减弱;含水层热量运移过程的方向性显著增强。

Abstract

Taking the multiple moving finite line heat sources(MFLS) operation mode as the research object, the unsteady state analytical solutions of the excess temperature in aquifer ΔTMFLS are obtained by applying space-time superposition principle, based upon the transient moving finite line heat source model. A calculation model coupled lattice Boltzmann method (LBM) and ΔTMFLS is established, according to introduce the discrete force source term into the Lattice Bhatnagar-Gross-Krook (LBGK) evolution equation of the velocity distribution function. The coupled model and the calculation method are validated by the data determined from the in-situ thermal re-sponse test. The results show that coupled LBM-ΔTMFLS simulation can well reproduce the evolution process of seepage velocity in aquifer which presents four successive stages of starting, declining, rising and stabilizing. With the decreasing of the porosity of aquifer, the movement space of virtual fluid particles reduces, consequently the collision probability of inter-particles and between particles and porous media increases, which leads to the kinetic energy loss enhancing, the descend range of seepage velocity increasing, and the recovery process retarding. While the inflow velocity increases, however, the influence degree of porosity on the hydrodynamic evolution of aquifer weakens. Meanwhile the directivity of the heat transport process in the aquifer enhances significantly.

关键词

地热能 / 传热 / 多孔介质 / 数值模型 / 含水层 / 格子Boltzmann方法

Key words

geothermal energy / heat transfer / porous media / numerical models / aquifers / lattice Boltzmann method

引用本文

导出引用
马玖辰, 吕林海, 杨杰, 崔阿凤, 魏璠. 基于LBM-MFLS耦合模型的含水层渗流-传热过程模拟[J]. 太阳能学报. 2023, 44(5): 30-39 https://doi.org/10.19912/j.0254-0096.tynxb.2021-1450
Ma Jiuchen, Lyu Linhai, Yang Jie, Cui Afeng, Wei Fan. NUMERICAL SIMULATION OF FLUID SEEPAGE AND HEAT TRANSFER IN AQUIFER WITH LBM-MFLS COUPLED MODEL[J]. Acta Energiae Solaris Sinica. 2023, 44(5): 30-39 https://doi.org/10.19912/j.0254-0096.tynxb.2021-1450
中图分类号: TK529   

参考文献

[1] 中国电子信息产业发展研究院. 碳中和愿景下储能产业发展白皮书[M]. 北京: 中国电子信息产业发展研究院出版社, 2021.
China Institute of Electronic Information Industry Development. White paper on energy storage industry development under the vision of carbon neutralization [M]. Beijing: China Institute of Electronic Information Industry Development Publishing House, 2021.
[2] 国家发展和改革委员会能源局, 等. 关于促进地热能开发利用的若干意见[M]. 北京: 中国计划出版社, 2021.
National Development and Reform Commission Energy Reform Institute, et al. Several opinions on promoting the development and utilization of geothermal energy[M]. Beijing: China Planning Press, 2021.
[3] 王贵玲, 刘彦广, 朱喜, 等. 中国地热资源现状及发展趋势[J]. 地学前缘, 2020, 27(1): 1-9.
WANG G L, LIU Y G, ZHU X, et al.The status and development trend of geothermal resources in China[J]. Earth science frontiers, 2020, 27(1): 1-9.
[4] 清华大学建筑节能研究中心. 中国建筑节能年度发展研究报告(2020) [M]. 北京: 中国建筑工业出版社, 2020.
Tsinghua University Building Energy Conservation Research Center. Annual development report of building energy conservation in China (2020)[M]. Beijing: China Building Industry Press, 2020.
[5] SMITH D C, ELMORE A C.The observed effects of changes in groundwater flow on a borehole heat exchanger of a largescale ground coupled heat pump system[J]. Geothermics, 2018, 74: 240-246.
[6] BADRUDDIN I A, AZEEM K, YUNUS K T M, et al. Heat transfer in porous media: a mini review[J]. Materials today: proceedings, 2020, 24(Part2): 1318-1321.
[7] ZHANG M Y, ZHAO Q Y, HUANG Z J, et al.Numerical simulation of the drag and heat-transfer characteristics around and through a porous particle based on the lattice Boltzmann method[J]. Particuology, 2021, 58: 99-107.
[8] BAKHSHIAN S, HOSSEINI S A, SHOKRI N.Pore-scale characteristics of multiphase flow in heterogeneous porous media using the lattice Boltzmann method[J]. Scientific reports, 2019, 9(1): 464-467.
[9] MANDZHIEVA R, SUBHANKULOVA R.Practical aspects of absolute permeability finding for the lattice Boltzmann method and pore network modeling[J]. Physica A: statistical mechanics and its applications, 2021, 582: 126249.
[10] ZHU X F, WANG S, FENG Q H, et al.Pore-scale numerical prediction of three-phase relative permeability in porous media using the lattice Boltzmann method[J]. International communications in heat and mass transfer, 2021, 126: 105403.
[11] FENG X B, LIU Q, HE Y L.Numerical simulations of convection heat transfer in porous media using a cascaded lattice Boltzmann method[J]. International journal of heat and mass transfer, 2020, 151: 119410.
[12] PARVAN A, JAFARI S, RAHNAMA M, et al.Insight into particle retention and clogging in porous media: a pore scale study using lattice Boltzmann method[J]. Advances in water resources, 2020, 138: 103530.
[13] ZHANG Y T, JIANG F, TSUJI T.Influence of pore space heterogeneity on mineral dissolution and permeability evolution investigated using lattice Boltzmann method[J]. Chemical engineering science, 2022, 247: 117048.
[14] MA J C, JIANG Q, ZHANG Q L, et al.Effect of groundwater forced seepage on heat transfer characteristics of borehole heat exchangers[J]. Geothermal energy, 2021, 9(1): doi: 10.1186/S40517-021-00192-1.
[15] SELCUK E, BERTRAND F.Multilayer analytical model for vertical ground heat exchanger with groundwater flow[J]. Geothermics, 2018, 71: 294-305.
[16] HUAN J Z.Improved analytical model for vertical borehole ground heat exchanger with multiple-layer substrates and groundwater flow[J]. Applied energy, 2017, 202: 537-549.
[17] MCCULLOUGH J W S, AMINOSSADATI S M, LEONARDI C R. Transport of particles suspended within a temperature-dependent viscosity fluid using coupled LBM-DEM[J]. International journal of heat and mass transfer, 2020, 149: 119159.
[18] LIU X C, HUANG H B, LU X Y.Lattice Boltzmann study of effective viscosities of porous particle suspensions[J]. Computers and fluids, 2019, 181: 135-142.
[19] 马玖辰, 王文君, 王宇, 等. 基于含水层热-渗运移机理的地源热泵实验系统研发[J]. 实验室研究与探索, 2020, 39(8) : 88-93.
MA J C, WANG W J, WANG Y, et al.Research and development of ground source heat pump experimental system based on the mechanism of aquifer groundwater seepage and heat transferring[J]. Research and exploration in laboratory, 2020, 39(8): 88-93.
[20] 马玖辰, 王文君, 魏璠, 等. 热力弥散对地埋管换热器所在含水层传热过程的影响[J]. 太阳能学报, 2021, 42(3): 164-170.
MA J C, WANG W J, WEI F, et al.Influence of thermal dispersion on transfer process in aquifers around borehole heat exchangers[J]. Acta energia solaris sinica, 2021, 42(3): 164-170.
[21] YANG G C, JING L, KWOK C Y, et al.A comprehensive parametric study of LBM-DEM for immersed granular flows[J]. Computers and geotechnics, 2019, 114: 103100.

基金

国家自然科学基金(41402228); 天津市教委科研计划(2017KJ050); 中国能源建设股份有限公司重大科技专项课题 (CEEC2020-KJZX-10-01)

PDF(4488 KB)

Accesses

Citation

Detail

段落导航
相关文章

/