为研究太阳电池光电参数由低能质子辐照产生的辐射损伤机制,对In0.53Ga0.47As单结太阳电池开展100 keV 质子辐照及退火试验研究,分析太阳电池电参数和光谱响应在辐照及退火前后的变化规律,结合SRIM仿真计算结果对辐照引起的位移损伤进行讨论。结果表明,当质子辐照累积注量为5×1012 p/cm2时,In0.53Ga0.47As单结太阳电池的短路电流、开路电压和最大输出功率分别衰减到其初始值的88.8%、88.3%、72.3%;太阳电池光谱响应在短波区的衰减比长波区更严重。SRIM仿真结果表明,上述结果是由于100 keV的质子能量沉积在In0.53Ga0.47As单结太阳电池发射区和基区顶部而产生位移损伤缺陷导致的。对辐照后的太阳电池样品进行150 ℃退火处理,太阳电池电学参数因辐射感生缺陷的湮灭而产生了不同程度的恢复。
Abstract
In order to study the radiation damage mechanism of solar cell photoelectric parameters caused by low-energy proton irradiation, 100 keV proton irradiation and annealing experiments were carried out for In0.53Ga0.47As single junction cells. The variation laws of solar cell electrical parameters and spectral response before and after irradiation and annealing were analyzed. Based on the SRIM simulation results, the displacement damage caused by irradiation was discussed. The results shows that when the proton irradiation cumulative fluence up to 5 ×1012 p/cm2, the short-circuit current, open circuit voltage and maximum output power of In0.53Ga0.47As cell degraded to 88.8%, 88.3% and 72.3% respectively; The attenuation of solar cell spectral response in short wave region is more serious than that in long wave region. SRIM simulation results shows that these are caused by displacement damage defects due to the deposition of 100 keV proton energy on the emission region and top of the base region of In0.53Ga0.47As cell. The irradiated samples were annealed at 150 ℃, and the electrical parameters of samples were restored due to the annihilation of radiation-induced defects.
关键词
太阳电池效率 /
质子辐照 /
辐射损伤 /
量子效率
Key words
solar cells /
proton irradiation /
radiation damage /
quantum efficiency
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] 马大燕, 陈诺夫, 付蕊, 等. GaInP/GaAs/InGaAs倒装三结太阳电池设计与优化[J]. 太阳能学报, 2018, 39(2): 550-557.
MA D Y, CHEN N F, FU R, et al.Design and optimization of inverted metamorphic GaInP/GaAs/InGaAs triple junction solar cell[J]. Acta energiae solaris sinica, 2018, 39(2): 550-557.
[2] 刘冠洲, 毕京锋, 李明阳, 等. 多结太阳电池减反射膜的优化[J]. 太阳能学报, 2017, 38(2): 323-327.
LIU G Z, BI J F, LI M Y, et al.Optimization of anti-reflection film for multi-junction solar cell[J]. Acta energiae solaris sinica, 2017, 38(2): 323-327.
[3] LI J, AIERKEN A, ZHUANG Y, et al.1 MeV electron and 10 MeV proton irradiation effects on inverted metamorphic GaInP/GaAs/InGaAs triple junction solar cell[J]. Solar energy materials and solar cells, 2021, 224: 111022.
[4] 张延清, 周佳明, 刘超铭, 等. 柔性倒置赝型三结太阳电池高能质子辐射效应研究[J]. 原子能科学技术, 2021, 55(12): 8.
ZHANG Y Q, ZHOU J M, LIU C M, et al.High energy proton radiation effect on flexible thin-film inverted metamorphic triple junction solar cell[J]. Atomic energy science and technology, 2021, 55(12): 2216-2223.
[5] 高欣, 杨生胜, 冯展祖, 等. 空间三结砷化镓太阳电池位移损伤效应研究[J]. 太阳能学报, 2020, 41(2): 290-295.
GAO X,YANG S S,FENG Z Z, et al.Design and optimization of inverted metamorphic GaInP/GaAs/InGaAs triple junction solar cell[J]. Acta energiae solaris sinica, 2020, 41(2): 290-295.
[6] IMAIZUMI M, NAKAMURA T, TAKAMOTO T, et al.Radiation degradation characteristics of component sub-cells in inverted metamorphic triple-junction solar cells irradiated with electrons and protons[J]. Progress in photovoltaics research and applications, 2017, 25(2): 161-174.
[7] GREEN M, DUNLOP E, BINGER J H, et al.Solar cell efficiency tables (version 57)[J]. Progress in photovoltaics research applications, 2021, 29(1): 3-15.
[8] HEINI M, AIERKEN A, LI Z H, et al.Changes in output parameters of 1 MeV electron irradiated upright metamorphic GaInP/GaInAs/Ge triple junction solar cell[J]. AIP advances, 2018, 8(10): 105022.
[9] DAI P, JI L, TAN M, et al.Electron irradiation study of room-temperature wafer-bonded four-junction solar cell grown by MBE[J]. Solar energy materials and solar cells, 2017, 171: 118-122.
[10] ZHAO X F, HEINI M, SAILAI M, et al.1-MeV electron irradiation effects on InGaAsP/InGaAs double-junction solar cell and its component subcells[J]. Science China information sciences, 2017, 60(12): 120403.
[11] SALZBERGER M, NÖMAYR C, LUGLI P, et al. Degradation fitting of irradiated solar cells using variable threshold energy for atomic displacement[J]. Progress in photovoltaics, 2017, 25(9): 773-781.
[12] ZHENG Y, YI T C, WANG J L, et al.Radiation damage analysis of individual subcells for GaInP/GaAs/Ge solar cells using photoluminescence measurements[J]. Chinese physics letters, 2017, 34(2): 026101.
[13] 万松, 徐林, 刘锋, 等. 一种适用于太阳模拟器的太阳电池串联电阻提取算法[J]. 太阳能学报, 2013, 34(4): 653-658.
WAN S, XU L, LIU F, et al.Series resistance extraction method for solar simulator[J]. Acta energiae solaris sinica, 2013, 34(4): 653-658.
[14] ZHUANG Y, AIERKEN A, LEI Q Q, et al.Optoelectronic performance analysis of low-energy proton irradiation and post-thermal annealing effects on InGaAs solar cell[J]. Frontiers in physics, 2020, 8(11): 585707.
[15] YAMAGUCHI M, OKUDA T, TAYLOR S J, et al.Superior radiation-resistant properties of InGaP/GaAs tandem solar cells[J]. Applied physics letters, 1997, 70(12): 522548.
[16] NARANJO F B, SÁNCHEZ-GARCÍA M A, CALLE F, et al. Strong localization in InGaN layers with high In content grown by molecular-beam epitaxy[J]. Applied physics letters, 2002, 80(2): 231-233.
基金
新疆电子信息材料与器件重点实验室资助项目(2021D04012); 国家自然科学基金(61534008)