该文评估了5套再分析数据对阿勒泰地区风资源的模拟能力,并分析再分析资料在该区域长年代订正中的适用性问题。结果表明,不同再分析资料在阿勒泰地区的空间模拟存在差异,高分辨率的CFSv2、ERA5资料在空间模拟上更具优势,而JRA55、NCEP-DOE模式存在明显高估。季节上,除NCEP-DOE外,其余4套再分析数据均能模拟出阿勒泰地区风速的季节特性,且对冬季的模拟优于其他季节。在此基础上,以阿勒泰某风电场为例,分别以附近气象站和4套再分析数据作为长期测站,对测风塔数据进行代表年订正。订正结果表明,与参证气象站相比,ERA5和CFSv2数据与测风塔数据的相关性更好。在缺乏合适的气象站数据时,使用ERA5和CFSv2数据作为代表年订正的长期测站数据在阿勒泰地区具有可行性。
Abstract
In this paper, the simulation performance of five sets of reanalysis data of wind resources in Altay prefecture is evaluated, and the applicability of the reanalysis data to correct representative year of this region was also analyzed. The results show that different reanalysis data have different spatial simulation results in Altay prefecture, and CFSv2 and ERA5 data with high resolution have more advantages in spatial simulation, while the JRA55 and NCEP-DOE models have obvious overestimation. In terms of seasonal wind speed, except NCEP-DOE, the other sets of reanalysis data can simulate the seasonal characteristics of wind speed in Altay prefecture, and the simulation in winter is better than that in other seasons. In addition, a wind farm in Altay is taken as an example, and the wind tower data are corrected on a representative year by taking the nearby meteorological station and four sets of reanalysis data as long-term observation stations. The revised results show that ERA5 and CFSv2 data have better correlation with wind tower data than meteorological station. It is feasible to use ERA5 and CFSv2 data as long-term station data to correct representative year of wind with measurement data in Altay prefecture when suitable meteorological station data are lacking.
关键词
风电场 /
风速 /
资源评估 /
再分析数据
Key words
wind farm /
wind speed /
resource assessment /
reanalysis data
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] 钱永明, 邹昊, 洪梅. 基于CMIP5数据评估气候变化下西北航道风能资源的未来变化[J]. 海洋预报, 2021, 38(4): 76-86.
QIAN Y M, ZOU H, HONG M.Evaluating the evolution of wind energy resource in the Northwest Passage under climate change based on CMIP5 models[J]. Marine forecasts, 2021, 38(4): 76-86.
[2] 刘慧芝, 徐长春, 李佳秀, 等. 新疆地区最大风速变化及其环流指数验证分析[J]. 人民黄河, 2017, 39(8): 19-25.
LIU H Z, XU C C, Li J X, et al.Changes in the maximum wind speed and the confirmatory analysis by the circulation index in Xinjiang region[J]. Yellow river, 2017, 39(8): 19-25.
[3] 王政琪. CMIP5全球气候模式对东亚冬季气候特征模拟能力评估与未来变化预估[D]. 北京: 中国气象科学研究院, 2017.
WANG Z Q.Evaluation and projection of the CMIP5 models in simulating the change of the East Asian winter monsoon[D]. Beijing: Chinese Academy of Meteorological Sciences, 2017.
[4] AYIK A, IJUMBA N, KABIRI C, et al.Preliminary wind resource assessment in South Sudan using reanalysis data and statistical methods[J]. Renewable and sustainable energy reviews, 2020, 138: 110621.
[5] GUALTIERI G.Reliability of ERA5 reanalysis data for wind resource assessment: a comparison against tall towers[J]. Energies, 2021, 14(14): 4169.
[6] SAMAL R K.Assessment of wind energy potential using reanalysis data: a comparison with mast measurements[J]. Journal of cleaner production, 2021, 313: 127933.
[7] 李晓明, 陈玲, 张闪林. 测风数据代表年订正方法的研究[J]. 绿色科技, 2019(16): 51-54.
LI X M, CHEN L, ZHANG S L.Research on the representative year correction method for wind measurement data[J]. Journal of green science and technology, 2019(16): 51-54.
[8] 黄勇, 柴斌. 再分析数据在风电场代表年订正中的应用[J]. 电力勘测设计, 2019, 31(增刊1): 242-256.
HUANG Y, CHAI B.Correcting representative year of wind farm using reanalysis data[J]. Electric power survey & design, 2019, 31(S1): 242-256.
[9] 关于印发阿勒泰地区新能源产业高质量发展实施意见的通知[EB/OL]. Http://www.xjalt.gov.cn/govxxgk/DD001/ 2020-08-17/90247be2-717f-4a85-864c-77efd22b8e52.html.
Notice on the issuance of the implementation opinions on the high-quality development of new energy industry in Altay region[EB/OL]. Http://www.xjalt.gov.cn/govxxgk/DD001/2020-08-17/90247be2-717f-4a85-864c-77efd22b8e52.html.
[10] 吴佳, 高学杰. 一套格点化的中国区域逐日观测资料及与其它资料的对比[J]. 地球物理学报, 2013, 56(4): 1102-1111.
WU J, GAO X J.A gridded daily observation dataset over China region and comparison with the other datasets[J]. Chinese journal of geophysics, 2013, 56(4): 1102-1111.
[11] 张文霞, 张丽霞, 周天军. 雅鲁藏布江流域夏季降水的年际变化及其原因[J]. 大气科学, 2016, 40(5): 965-980.
ZHANG W X, ZHANG L X, ZHOU T J.Interannual variability and the underlying mechanism of summer precipitation over the Yarlung Zangbo River Basin[J]. Chinese journal of atmospheric sciences, 2016, 40(5): 965-980.
[12] 次央, 次仁旺姆, 德吉, 等. 1961—2015年青藏高原极端气温事件的气候变化特征[J]. 高原山地气象研究, 2021, 41(2): 108-114.
CI Y, CIREN W M, DE J, et al.Climate change characteristics of extreme temperature events in the Qinghai-Tibet Plateau from 1961 to 2015[J]. Plateau and mountain meteorology research, 2021, 41(2): 108-114.
[13] 白磊, 张帆, 尚明, 等. 基于格点数据的1961—2018年中国多种积温时空变化研究[J]. 地球信息科学学报, 2021, 23(8): 1446-1460.
BAI L, ZHANG F, SHANG M, et al.Evolution of the multiple accumulated temperature across mainland China in 1961-2018 with the gridded meteorological dataset[J]. Journal of geo-information science, 2021, 23(8): 1446-1460.
[14] CHEN Z, LI W, GUO J H.Projection of wind energy potential over northern China using a regional climate model[J]. Sustainability, 2020, 12(10): 3979.
[15] 陈说, 叶涛, 刘苇航, 等. NEX-GDDP和CMIP5对青藏高原地区近地面气象场历史和未来模拟的评估与偏差校正[J]. 高原气象, 2021, 40(2): 257-271.
CHEN S, YE T,LIU W H, et al.Evaluation and bias correction of the historical and future near-surface climate forcing in NEX-GDDP and CMIP5 over the Qinghai-Xizang Plateau[J]. Plateau meteorology, 2021, 40(2): 257-271.
[16] 李京龙, 武胜利, 葛欢欢, 等. 1962—2016年阿勒泰地区风速变化分析[J]. 干旱区地理, 2018, 41(3): 499-507.
LI J L, WU S L, GE H H, et al.Wind speed change in Altay Prefecture from 1962 to 2016[J]. Arid land geography, 2018, 41(3): 499-507.
[17] SHI P J, ZHANG G F, KONG F, et al.Wind speed change regionalization in China (1961-2012)[J]. Advances in climate change research, 2015, 6(2): 151-158.
[18] 孙锐. 利用风电场内长期测风数据进行代表年分析研究[J]. 自动化应用, 2020(10): 88-90.
SUN R.The long-term wind data in the wind farm are used for the representative year analysis[J]. Automation application, 2020 (10): 88-90.
[19] 刘汉武, 王文本, 江滢, 等. 再分析数据在风能资源评估中的优势和局限性[J]. 风能, 2016(12): 58-63.
LIU H W, WANG W B, JIANG Y, et al.Advantages and limitations of reanalysis data in wind energy resource assessment[J]. Wind energy, 2016 (12): 58-63.
[20] 邓小花, 翟盘茂, 袁春红. 国外几套再分析资料的对比与分析[J]. 气象科技, 2010, 38(1): 1-8.
DENG X H, ZHAI P M, YUAN C H.Comparative analysis of NCEP/NCAR, ECMWF and JMA reanalysis[J]. Meteorological science and technology, 2010, 38(1): 1-8.
基金
国家重点研发计划(2018YFE0208400); 国家电网有限公司总部科技项目《面向跨境互联的多能互补新型能源系统关键技术研究》