基于三维DTRT传热模型的地源热泵土壤热导率测试方法研究

邓臻鹏, 年永乐, 程文龙

太阳能学报 ›› 2023, Vol. 44 ›› Issue (4) : 259-265.

PDF(2541 KB)
欢迎访问《太阳能学报》官方网站,今天是
PDF(2541 KB)
太阳能学报 ›› 2023, Vol. 44 ›› Issue (4) : 259-265. DOI: 10.19912/j.0254-0096.tynxb.2021-1471

基于三维DTRT传热模型的地源热泵土壤热导率测试方法研究

  • 邓臻鹏, 年永乐, 程文龙
作者信息 +

TEST METHOD RESEARCH OF SOIL THERMAL CONDUCTIVITY OF GROUND SOURCE HEAT PUMP BASED ON THREE-DIMENSIONAL DISTRIBUTED THERMAL RESPONSE TEST HEAT TRANSFER MODEL

  • Deng Zhenpeng, Nian Yongle, Cheng Wenlong
Author information +
文章历史 +

摘要

为进一步提升土壤热导率测试精度和效率,基于建立的三维分布式热响应测试(DTRT)理论模型,结合粒子群算法提出一种新型土壤热导率的DTRT测试方法,并基于该方法对土壤热导率的时空变化规律进行研究。首先针对U型埋管换热器建立DTRT三维传热分析模型,然后通过建立DTRT实验平台获得流体温度数据并验证建立的传热模型,同时利用建立的模型计算分析土壤热导率、管间距和加热功率对流体温度的影响,最后基于不同时间和深度的温度数据并采用粒子群算法对土壤热导率随时间变化和空间分布规律进行研究。研究结果表明,建立的DTRT理论模型具有较高精度,流体进出口温度的平均分析误差约为0.5 ℃;利用不同深度的温度数据预测出的土壤热导率稳定性较好,最大偏差仅为1.49%;不同时间土壤热导率的预测结果收敛性也较好,在5和20 h下的测试结果偏差仅为4.67%。此外,土壤热导率预测结果与参考值吻合度较高,说明该文提出的方法可在短时间内对不同深度的土壤热导率进行有效预测。

Abstract

Soil thermal conductivity is a key parameter for ground source heat pump systems design, for improving the accuracy and efficiency of soil thermal conductivity testing, this paper proposes a new estimation method for soil thermal conductivity based on the built three-dimensional theoretical model of distributed thermal response test (DTRT) and particle swarm algorithm, and the temporal and spatial variation of soil thermal conductivity is studied by the proposed method. Firstly, a three-dimensional heat transfer model for DTRT of U-pipe borehole heat exchanger is established, and then a DTRT experimental platform is built to obtain the fluid temperature profiles and validate the established heat transfer model. At the same time, the effects of soil thermal conductivity, pipe spacing and heating power on fluid temperature are investigated by the established model. Finally, the variation of soil thermal conductivity with time and depth is estimated by using particle swarm algorithm based on DTRT data. The results show that the established DTRT theoretical model has high accuracy, and the average analysis error of fluid inlet and outlet temperature is about 0.5 ℃. And the estimated soil thermal conductivity at different depths is stable, and the maximum deviation is only 1.49%. In addition, the predicted soil thermal conductivity at different times also has good convergence, and the deviation between 5 h and 20 h is only 4.67%. Simultaneously, the predicted soil thermal conductivity is in good agreement with the reference value, indicating that the proposed method in this paper can predict soil thermal conductivity at different depths in a short time effectively.

关键词

地源热泵 / 土壤热导率 / DTRT / U型埋管换热器 / 三维传热模型 / 粒子群

Key words

ground source heat pump / soil thermal conductivity / DTRT / U-pipe borehole heat exchanger / three-dimensional heat transfer model / particle swarm optimization

引用本文

导出引用
邓臻鹏, 年永乐, 程文龙. 基于三维DTRT传热模型的地源热泵土壤热导率测试方法研究[J]. 太阳能学报. 2023, 44(4): 259-265 https://doi.org/10.19912/j.0254-0096.tynxb.2021-1471
Deng Zhenpeng, Nian Yongle, Cheng Wenlong. TEST METHOD RESEARCH OF SOIL THERMAL CONDUCTIVITY OF GROUND SOURCE HEAT PUMP BASED ON THREE-DIMENSIONAL DISTRIBUTED THERMAL RESPONSE TEST HEAT TRANSFER MODEL[J]. Acta Energiae Solaris Sinica. 2023, 44(4): 259-265 https://doi.org/10.19912/j.0254-0096.tynxb.2021-1471
中图分类号: TK521   

参考文献

[1] 王沣浩, 蔡皖龙, 王铭, 等. 地热能供热技术研究现状及展望[J]. 制冷学报, 2021, 42(1): 14-22.
WANG F H, CAI W L, WANG M, et al.Status and outlook for research on geothermal heating technology[J]. Journal of refrigeration, 2021, 42(1): 14-22.
[2] SARBU I, SEBARCHIEVICI C.General review of ground-source heat pump systems for heating and cooling of buildings[J]. Energy and buildings, 2014, 70: 441-454.
[3] CUI P, YANG H X, FANG Z H.Heat transfer analysis of ground heat exchangers with inclined boreholes[J]. Applied thermal engineering, 2006, 26(11-12): 1169-1175.
[4] KAVANAUGH S P.Field tests for ground thermal properties—methods and impact on ground-source heat pump design[J]. Ashrae transactions, 2000, 106(1): 851-855.
[5] AUSTIN W A I, YAVUZTURK C, SPITLER J D. Development of an in-situ system and analysis procedure for measuring ground thermal properties[J]. ASHRAE transaction, 2000, 106(1): 365-379.
[6] NIAN Y L, WANG X Y, CHENG W L.Sequential estimation of borehole resistance and ground thermal properties through thermal response test[J]. International journal of energy research, 2020, 44 : 12015-12028.
[7] 程文龙, 王昌龙, 年永乐. 基于测温数据的地热井地层热物性分布评估方法研究[J]. 太阳能学报, 2016, 37(7): 1863-1867.
CHENG W L, WANG C L, NIAN Y L.Study on predicting spacial distribution of formation thermal properties based on geothermal well's temperature logs[J]. Acta energiae solaris sinica, 2016, 37(7): 1863-1867.
[8] MOGENSEN P.Fluid to duct wall heat transfer in duct system heat storage[C]//International Conference on Subsurface Heat Storage in Theory and Practice, Swedish Council for Building Research, Swedish, 1983.
[9] 于明志, 彭晓峰, 方肇洪, 等. 基于线热源模型的地下岩土热物性测试方法[J]. 太阳能学报, 2006, 27(3): 279-283.
YU M Z, PENG X F, FANG Z H, et al.Line source method for measuring thermal proerties of deep geound[J]. Acta energiae solaris sinica, 2006, 27(3): 279-283.
[10] 赵军, 段征强, 宋著坤, 等. 基于圆柱热源模型的现场测量地下岩土热物性方法[J]. 太阳能学报, 2006, 27(9): 934-936.
ZHAO J, DUAN Z Q, SONG Z K, et al.A method for in situ determining underground thermal properties based on the cylindrical heat sourcemodel[J]. Acta energiae solaris sinica, 2006, 27(9): 279-283.
[11] INGERSOLL L R, PLASS H J.Theory of the ground pipe heat source for the heat pump[J]. ASHRAE transactions, 1948, 54(7): 339-348.
[12] WITTE H.In situ estimation of ground thermal properties[M]. Cambridge: Woodhead Publishing, 2016: 97-116.
[13] CHOI W, OOKA R.Effect of disturbance on thermal response test, part 2: numerical study of applicability and limitation of infinite line source model for interpretation under disturbance from outdoor environment[J]. Renewable energy, 2016, 85: 1090-1105.
[14] CHOI W, OOKA R.Interpretation of disturbed data in thermal response tests using the infinite line source model and numerical parameter estimation method[J]. Applied energy, 2015, 148: 476-488.
[15] WAGNER V, BAYER P, KÜBERT M, et al. Numerical sensitivity study of thermal response tests[J]. Renewable energy, 2012, 41: 245-253.
[16] RAYMOND J, THERRIEN R, GOSSELIN L, et al.Numerical analysis of thermal response tests with a groundwater flow and heat transfer model[J]. Renewable energy, 2011, 36(1): 315-324.
[17] BEIER R A.Vertical temperature profile in ground heat exchanger during in-situ test[J]. Renewable energy, 2011, 36(5): 1578-1587.
[18] FUJII H, OKUBO H, NISHI K, et al.An improved thermal response test for U-tube ground heat exchanger based on optical fiber thermometers[J]. Geothermics, 2009, 38(4): 399-406.
[19] NIAN Y L, WANG X Y, XIE K, et al.Estimation of ground thermal properties for coaxial BHE through distributed thermal response test[J]. Renewable energy, 2020, 152 : 1209-1219.
[20] 桑宏伟, 张春光, 刘洋, 等. 基于DTS的土体分布式导热系数测试方法[J]. 地下空间与工程学报, 2020, 16(2): 540-546.
SANG H W,ZHANG C G,LIU Y, et al.Testing method of distributed thermal conductivity of soil based on DTS[J]. Chinese journal of underground space and engineering, 2020, 16(2): 540-546.
[21] MCDANIEL A, TINJUM J, HART D J, et al.Distributed thermal response test to analyze thermal properties in heterogeneous lithology[J]. Geothermics, 2018, 76: 116-124.
[22] ZHANG Y J, HAO S R, YU Z W, et al.Comparison of test methods for shallow layered rock thermal conductivity between in situ distributed thermal response tests and laboratory test based on drilling in northeast China[J]. Energy and buildings, 2018, 173: 634-648.
[23] ZHAO P, LI X Z, ZHANG Y, et al.Stratified thermal response test measurement and analysis[J]. Energy and buildings, 2020, 215: 109865.
[24] SAKATA Y, KATSURA T, NAGANO K.Multilayer-concept thermal response test: measurement and analysis methodologies with a case study[J]. Geothermics, 2018, 71: 178-186.
[25] HERRERA C, NELLIS G, REINDL D, et al.Use of a fiber optic distributed temperature sensing system for thermal response testing of ground-coupled heat exchangers[J]. Geothermics, 2018, 71: 331-338.

基金

国家自然科学基金(52006211); 安徽省重点研究与开发计划(202004a07020053)

PDF(2541 KB)

Accesses

Citation

Detail

段落导航
相关文章

/