首先基于有限元方法,建立双玻光伏组件仿真模型,并对仿真结果进行实验验证;然后选取光伏组件边框的长度、宽度、高度和厚度为影响因素,以组件成本最小和强度最优为目标进行多次正交试验分析;最后,通过Pareto最优解方法获得光伏组件的最佳尺寸。结果表明:组件中心最大变形实验值与仿真值的最大误差仅为7.33%,证明仿真结果的准确性;最大应力随长度的增加而上升,随宽度的增加先上升后下降,随高度的增加而下降,随厚度的增加无明显变化;单位面积价格随长度的增加而下降,随宽度的增加略微下降,随高度的增加而大幅上升,随厚度的增加而上升;当组件长度为1200 mm,宽度为787.5 mm,高度为37.5 mm,厚度为1.5 mm时,满足应力要求且成本最低,与初始结构相比成本降低8.41%。
Abstract
Firstly, this study establishes the simulation model of double-glass photovoltaic module based on the finite element method and verifies the simulation results experimentally. Then the length, width, height and thickness of the photovoltaic module are selected as influencing factors, and multiple orthogonal design is carried out taking the minimum module cost and optimal strength as the objective. Finally, the optimal size of the photovoltaic module is obtained by the Pareto method. The results show that the maximum error between the experimental and simulated values of the component center deformation is only 7.33%, which Verifies the accuracy of the simulation results. The maximum stress increases with the increase of length, increases first and then decreases with the increase of width, decreases with the increase of height, and has no obvious change with the increase of thickness. The price decreases with the increase of length, slightly decreases with the increase of width, greatly increases with the increase of height, and increases with the increase of thickness. When the module length, width, height, and thickness are 1200 mm, 787.5 mm, 37.5 mm, and 1.5 mm, respectively, the stress requirement is satisfied and the cost is the lowest. The cost of optimized structure is reduced by 8.41% compared with the initial structure.
关键词
光伏组件 /
正交试验设计 /
有限元 /
双玻 /
组件优化 /
多目标优化 /
Pareto最优解
Key words
photovoltaic modules /
orthogonal design /
finite element /
double glass /
component optimization /
multi-objective optimal /
Pareto optimal solutions
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] 杨洪明, 陈博文, 王懂, 等. 局部阴影遮挡下太阳能电池-超级电容器件阵列建模及其缺失电流协同补偿方法[J]. 电力自动化设备, 2021, 41(6): 15-23.
YANG H M, CHEN B W, WANG D, et al.Modeling of solar cell-supercapacitor device array under local shadow and its cooperative compensation method of missing current[J]. Electric power automation equipment, 2021, 41(6): 15-23.
[2] 简明阳, 胡晓芳, 杨敬博. 光伏发电组件自适应最大功率追踪安全系统的设计[J]. 科学技术创新, 2021(29): 16-18.
JIAN M Y, HU X F, YANG J B.Photovoltaic components adaptive maximum power tracking security system design[J]. Scientific and technological innovation, 2021(29): 16-18.
[3] 许宁, 李旭辉, 高晨崇, 等. 光伏系统风荷载体型系数分析[J]. 太阳能学报, 2021, 42(10): 17-22.
XU N, LI X H, GAO C C, et al.Analysis of shape coefficients of wind loads of photovoltaic system[J]. Acta energiae solaris sinica, 2021, 42(10): 17-22.
[4] 赵明智, 吴丽玲, 王帅, 等. 沙漠沙尘对光伏组件输出性能影响实验研究[J]. 热科学与技术, 2021, 20(4): 340-347.
ZHAO M Z, WU L L, WANG S, et al.Experimental study on the effect of wind-sand in desert on the output performance of photovoltaic modules[J]. Journal of thermal science and technology, 2021, 20(4): 340-347.
[5] 何永泰, 肖丽仙, 王建秋, 等. 双玻光伏组件PV/T集热器特性及实验研究[J]. 太阳能学报, 2021, 42(5): 246-251.
HE Y T, XIAO L X, WANG J Q, et al.Characteristic and experimental study of PV/T collector with double glass photovoltaic modules[J]. Acta energiae solaris sinica, 2021, 42(5): 246-251.
[6] AlY A M. On the evaluation of wind loads on solar panels: the scale issue[J]. Solar energy, 2016, 135: 423-434.
[7] BITSUAMLAK G, DAGNEW A K, ERWIN J.Evaluation of wind loads on solar panel modules using CFD[C]//Proceedings of the 5th International Symposium on Computational Wind Engineering(CWE2010), Chapel Hill, NC, USA, 2010.
[8] YU Y M.Numerical simulation of wind load on roof mounted solar panels[D]. Windsor: University of Windsor, 2012.
[9] 刘大为, 田鸿翔, 高虎, 等. 光伏组件抗机械静载荷能力的模拟计算研究[J]. 电源技术, 2018, 42(11): 1662-1665.
LIU D W, TIAN H X, GAO H, et al.Simulation of mechanical performance of photovoltaic module under static load[J]. Chinese journal of power sources, 2018, 42(11): 1662-1665.
[10] 杨剑秋, 王延荣. 基于正交试验设计的空心叶片结构优化设计[J]. 航空动力学报, 2011, 26(2): 376-384.
YANG J Q, WANG Y R.Structural optimization of hollow fan blade based on orthogonal experimental design[J]. Journal of aerospace power, 2011, 26(2): 376-384.
[11] 刘建鹏, 王震虎, 林启权, 等. 基于正交试验的铝代钢冲压成形工艺参数优化[J]. 塑性工程学报, 2018, 25(5): 110-116.
LIU J P, WANG Z H, LIN Q Q, et al.Optimization of stamping process parameters for aluminum instead of steel based on orthogonal experiment[J]. Journal of plasticity engineering, 2018, 25(5): 110-116.
[12] ZHOU L, YUAN T B, YANG X S, et al.Micro-scale prediction of effective thermal conductivity of CNT/Al composites by finite element method[J]. International journal of thermal sciences, 2022, 171, 107206.
[13] 张大千, 吴康宁. 挡风墙对近地面光伏板风压的影响研究[J]. 沈阳航空航天大学学报, 2020, 37(3): 12-23.
ZHANG D Q, WU K N.Study on the influence of windshield wall on wind pressure of near-surface photovoltaic panel[J]. Journal of Shenyang Aerospace University, 2020, 37(3): 12-23.
[14] RIAHI-MADVAR H, GHOLAMI M, GHARABAGHI B, et al.A predictive equation for residual strength using a hybrid of subset selection of maximum dissimilarity method with Pareto optimal multi-gene genetic programming[J]. Geoscience frontiers, 2021, 12(5): 101222.
[15] ABOLFAZL K, MOHAMADHOSEIN S, JAVAD R, et al.Pareto based multi-objective optimization of solar thermal energy storage using genetic algorithms[J]. Transactions of the Canadian Society for Mechanical Engineering, 2010, 34(3-4): 463-474.
基金
国家自然科学基金(11702177); 辽宁省教育厅面上项目(LJKZ0182); 沈阳航空航天大学校引进人才科研启动基金(21YB03)