基于2000—2013年中国近海及邻近海域海洋逐日再分析产品(China Ocean Reanalysis, CORA)数据资料,通过计算南海表层(5 m)与深层(1000 m)的温差、卡诺效率、有效水头、暖水体积量、温差能可开发量等参数,对中国南海温差能在季节、年代际的地理分布及其变化特征进行详细分析。结果表明:1)南海大于1000 m水深海域的温差均满足发电净效率的要求,可全年有效开采,温差分布具有明显季节变换特征,夏季最高,秋、春次之,冬季最低,常年高值主要集中在南沙群岛至吕宋岛西部一带。2)中沙群岛以南是卡诺效率高值且月波动较小海区,效率最高月份为5—8月份。3)南海温差能年平均有效水头介于774~945 m,高值主要分布在南海中东部、南部海域,呈西南—东北走向,有效水头在850 m以上;南海中南部、吕宋岛西部海域年际变化呈2.0~3.0 m/a上升趋势。4)南海暖水体积量月变化呈“V”型,冬季8.50×1013 m3以上,处在较高水平;年际变化0.165×1013 m3/a,呈增长趋势,年平均7.31×1013 m3。5)南海温差能14年平均可开发量238.86 GW,年际变化5.61 GW/a,呈增长趋势,潜在开发前景十分可观。
Abstract
According to the China Ocean Reanalysis (CORA) of daily average temperature in the South China Sea (SCS) from 2000 to 2013, this paper analyzes the geographical distribution of thermal energy in the SCS different seasons and years and its change by calculating temperature difference between the sea surface (5 m) and deep sea (1000 m), Carnot efficiency, effective head, volume of warm water and available exploitation amount of thermal energy. The results show that: 1) The temperature difference in the deep sea of more than 1000 m is adequate to generate efficient net power, which is available through out the year. Its distribution varies from season to season, it is highest in summer, followed by autumn and spring and winter. From the Spratly Islands to the western part of Luzon Island, it is usually hot all year round. 2) South of the Zhongsha Islands has the highest Carnot with the lowest fluctuation. The highest efficient month is from May to August. 3) The annual average effective head is 774 m-945 m in the SCS. It is highest in the Middle East and south of the SCS, and it is more than 850 m from the southwest to the northeast. It increases by 2.0 m-3.0 m year on year in the central and southern SCS and the Western Luzon Island. 4) The monthly change of warm water volume in the SCS is in a "V-shaped" distribution. The warm water volume in winter is high, above 8.50×1013 m3. The average volume is 7.31×1013 m3 per year, with an increase of 0.165×1013 m3/a. 5) In 14 years. The average amount of thermal energy that can be exploited in the SCS is 238.86 GW, with an increase of 5.61 GW/a. Therefore, there is great prospect in exploiting the thermal energy in the SCS.
关键词
温差能 /
海洋温差能转化技术 /
可再生能源 /
卡诺效率 /
有效水头 /
暖水体积 /
可开发量
Key words
thermal energy /
ocean thermal energy conversion /
renewable energy resources /
Carnot efficiency /
effective head /
warm water volume /
available exploitation amount
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] 苏佳纯, 曾恒一, 肖钢, 等. 海洋温差能发电技术研究现状及在我国的发展前景[J]. 中国海上油气, 2012, 24(4): 84-98.
SU J C, ZENG H Y, XIAO G, et al.Research status and prospect ocean thermal energy conversion technology[J]. China offshore oil and gas, 2012, 24(4): 84-98.
[2] BUUD K, FRANK N.Ocean thermal energy conversion: technology brief[R]. IRENA Ocean Energy Technology Brief 1, 2014.
[3] OWENS W L, TRIMBLE L C.Mini-OTEC operational results[J]. Journal of solar energy engineering, 1981, 103(3): 233-240.
[4] LENNARD D E.Ocean thermal energy conversion—past progress and future prospects[J]. IEE proceedings A (physical science, measurement and instrumentation, management and education, reviews), 1987, 134(5): 381-391.
[5] VANZWIETEN J H, RAUCHENSTEIN L T, LEE L.An assessment of Florida’s ocean thermal energy conversion (OTEC) resource[J]. Renewable and sustainable energy reviews, 2017, 75: 683-691.
[6] KIM H J, KIM A S.Ocean thermal energy conversion (OTEC): past, present, and progress[M]. London:IntechOpen, 2020.
[7] 刘伟民, 陈凤云, 王义强, 等. 海洋温差能闭式循环进展及新型循环系统研究[C]//中国可再生能源学会2011年学术年会论文集, 北京, 2011: 41-44.
LIU W M, CHEN F Y, WANG Y Q, et al.Progress of Closed-cycle OTEC and study of a new cycle of OTEC[C]//Proceeding of 2011 Academic Annual Meeting of China Renewable Energy Society, Beijing, 2011: 41-44.
[8] RAJAGOPALAN K, NIHOUS G C.Estimates of global Ocean Thermal Energy Conversion (OTEC) resources using an ocean general circulation model[J]. Renewable energy, 2013, 50(6): 532-540.
[9] RAUCHENSTEIN L T, VANZWIETEN J H, HANSON H P.Model-based global assessment of OTEC resources with data validation off Southeast Florida[C]//OCEANS 2011 IEEE-Spain, Santander, Spain, 2011: 1-5.
[10] VANZWIETEN J H, RAUCHENSTEIN L T, HANSON H P, et al.Assessment of HYCOM as a tool for estimating Florida’s OTEC potential[C]//OCEANS’11 MTS/IEEE KONA, Waikoloa, HI, USA, 2011: 1-8.
[11] TRENGGONO M, HIDAYAT R R, CAHYO T N, et al.An assessment Indonesia’s Ocean Thermal Energy Conversion (OTEC) as an electrical energy resource[J]. IOP conference series earth and environmental science, 2021, 746(1): 012041.
[12] 岳娟, 于汀, 李大树, 等. 国内外海洋温差能发电技术最新进展及发展建议[J]. 海洋技术学报, 2017, 36(4): 82-87.
YUE J, YU T, LI D S, et al.Study on the up-to-date progress and suggestions for ocean thermal energy conversion technologies[J]. Journal of ocean technology, 2017, 36(4): 82-87.
[13] White Paper Ocean Thermal Energy Conversion[R]. The Executive Committee of the IEA Ocean Energy Systems (OES), 2021.
[14] RAJAGOPALAN K, NIHOUS G C.An assessment of global ocean thermal energy conversion resources under broad geographical constraints[J]. Journal of renewable & sustainable energy, 2013, 5(6): 370-401.
[15] 闫恒乾, 王辉赞, 周树道, 等. 基于SODA资料的太平洋及我国周边海域温差能资源时空特征分析[J]. 海洋学报, 2017, 39(11): 128-140.
YAN H Q, WANG H Z, ZHOU S D, et al.Analysis on the temporal and spatial characteristics of the thermal energy in the Pacific Ocean and the sea area surrounding China base on SODA data[J]. Acta oceanologica sinica, 2017, 39(11): 128-140.
[16] WICK G L, SCHMITT R.Prospects for renewable energy from the sea[J]. Marine technology society journal, 1977, 11(5): 16-21.
[17] 王海鹰, 朱彤, 黄晓艳. 我国海洋温差能资源评估的若干难点探讨[C]//2010中国可再生能源科技发展大会论文集, 北京, 2010: 2550-2553.
WANG H Y, ZHU T, HUANG X Y.Issues about China ocean thermal energy resource assessment[C]//Conference on China Technological Development of Renewable Energy Source, Beijing, 2010: 2550-2553.
[18] HAN G J, LI W, ZHANG X F, et al.A new version of regional ocean reanalysis for coastal waters of China and adjacent seas[J]. Advances in atmospheric sciences, 2013, 30(4): 974-982.
[19] ESRI Arcgis10.2: Useing ArcGIS Geostatiscal Analyst[R]. 2013.
[20] 王传崑, 卢苇. 海洋能资源分析方法及储量评估[M]. 北京: 海洋出版社, 2009.
WANG C K, LU W.Analysis ocean energy resource analysis method and reserve evaluation[M]. Beijing: China Ocean Press, 2009.
[21] 杨海军, 刘秦玉. 南海上层水温分布的季节特征[J]. 海洋与湖沼, 1998(5): 501-507.
YANG H J, LIU Q Y.The seasonal features of temperature distributions in the upper layer of the South China Sea[J]. Oceanologia et limnologia sinica, 1998(5): 501-507.
[22] 林锡贵. 冬、 夏季风转换期间南海南部海区的气象特征[J]. 广东气象, 2003(1): 10-12.
LIN X G.Meteorological features of southern South China Sea area during winter and summer monsoon transition period[J]. Guangdong meteorology, 2003(1): 10-12.
[23] JIANG B, WEI Y, DING J, et al.Trends of sea surface wind energy over the South China Sea[J]. Journal of Oceanology and limnology, 2019, 37(5): 1510-1522.
[24] 贾旭晶, 刘秦玉, 孙即霖. 1998年5-6月南海上混合层、温跃层不同定义的比较[J]. 海洋湖沼通报, 2001, 23(1): 1-7.
JIA X J, LIU Q Y, SUN J L.A comparison between two different definitions of the mixlayer and the thermocline in the South China Sea[J]. Transactions of oceanology and limnology, 2001, 23(1): 1-7.
[25] GB/T 12763.7—2007,海洋调查规范第7部分: 海洋调查资料交换B/T 12763.7—2007,海洋调查规范第7部分: 海洋调查资料交换[S], 2017.
GB/T 12763.7—2007,The specifications for oceanographic survey Part 7: exchange of oceanographic survey dataB/T 12763.7—2007,The specifications for oceanographic survey Part 7: exchange of oceanographic survey data[S], 2017.
[26] 蒋国荣,郝少东, 杜涛, 等. 南海北部温跃层逐月变化特征分析[J]. 海洋预报, 2011, 28(3): 40-45.
JIANG G R, HAO S D, DU T, et al.Monthly variabilities of the thermocline in the Northern South China Sea[J]. Marine forecasts, 2011, 28(3): 40-45.
[27] 周燕遐. 南海海洋温度跃层统计分析[D]. 青岛: 中国海洋大学, 2002.
ZHOU Y X.Statistical analys is ocean thermocline on the South China Sea[D]. Qingdao: Ocean University of China, 2002.
[28] 武扬, 程国胜. 南海混合层深度的季节和年际变化特征[J]. 海洋预报, 2013, 30(3): 9-17.
WU Y, CHENG G S.Seasonal and inter-annual variations of the mixed layer depth in the South China Sea[J]. Marine forecasts, 2013, 30(3): 9-17.
[29] 韩家新. 中国近海海洋:海洋可再生能源[M]. 北京: 海洋出版社, 2015.
HAN J X.China’s offshore oceans: marine renewable energy[M]. Beijing: China Ocean Press, 2015.
基金
国家重点研发计划(2017YFE0132000); 国家自然科学基金(52078251; 51761135013); 自然资源部海洋环境信息保障技术重点实验室基金(基于CORA资料的南海温差能资源评估)