针对现有漂浮式风力机在风浪作用下运动响应较大的问题,提出一种具有圆台形浮筒的新型半潜式平台。基于FAST耦合水动力、空气动力和系泊系统等物理场,同时结合水动力学软件AQWA计算的频域参数对不同风况下漂浮式风力机动力学响应进行分析,并在额定风况下与OC4-DeepCwind漂浮式风力机进行对比。分析结果表明:不同风速对漂浮式风力机的纵荡、纵摇及艏摇运动影响明显,对垂荡运动影响较小;与OC4漂浮式风力机相比,新型漂浮式风力机在各风况下纵摇、横摇响应得到明显降低,具有良好的稳定性。
Abstract
In order to solve the problem of large motion responses of the existing floating wind turbines under the action of wind and waves, a new type of semi-submersible platform with round table-shaped buoy is proposed. Based on FAST coupling hydrodynamics, aerodynamics and mooring system and other physical fields, combined with the frequency domain parameters calculated by hydrodynamics software AQWA, the dynamic responses of the floating wind turbine under different wind conditions are analyzed, and compared with OC4-DeepCwind floating wind turbine under rated wind condition. The analysis results show that different wind speeds have obvious influence on the surge, pitch and yaw motions of the floating wind turbine, but have little influence on the heave motion. Compared with the OC4 floating wind turbine, the pitch and roll responses of the new floating wind turbine are obviously reduced under various wind conditions, and have good stability.
关键词
漂浮式风力机 /
半潜式平台 /
多物理场 /
风况 /
动力学响应
Key words
floating wind turbines /
semi-submersible platform /
multi-physics field /
wind condition /
dynamic response
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] ZHAO Y S, SHE X H, HE Y P, et al.Experimental study on new multi-column tension-leg-type floating wind turbine[J]. China ocean engineering, 2018, 32(2): 123-131.
[2] MENG L, HE Y P, ZHAO Y S, et al.Dynamic response of 6 MW Spar type floating offshore wind turbine by experiment and numerical analyses[J]. China ocean engineering, 2020, 34(5): 608-620.
[3] 李蜀军, 李春, 王博, 等. 普通和恶劣海况下漂浮式风电场概念设计及平台动态响应[J]. 动力工程学报, 2020, 40(12): 1019-1027.
LI S J, LI C, WANG B, et al.Concept design and dynamic response of floating wind turbine platforms under normal and severe sea conditions[J]. Journal of Chinese Society of Power Engineering, 2020, 40(12): 1019-1027.
[4] 陈嘉豪, 裴爱国, 马兆荣, 等. 海上漂浮式风机关键技术研究进展[J]. 南方能源建设, 2020, 7(1): 8-20.
CHEN J H, PEI A G, MA Z R, et al.A review of the key technologies for floating offshore wind turbines[J]. Southern energy construction, 2020, 7(1): 8-20.
[5] 王彪, 毕涛, 肖志颖. 海上浮式风机基础设计综述[J]. 电力勘测设计, 2018(9): 56-61.
WANG B, BI T, XIAO Z Y.Summary of foundation design for offshore floating wind turbine[J]. Electric power survey & design, 2018(9): 56-61.
[6] 周绪红, 王宇航, 邓然. 海上风电机组浮式基础结构综述[J]. 中国电力, 2020, 53(7): 100-105, 112.
ZHOU X H, WANG Y H, DENG R.Review on floating foundation structures for offshore wind turbines[J]. Electric power, 2020, 53(7): 100-105, 112.
[7] GUZMÁN S D, MARÓN D, BUENO P, et al. A reduced draft Spar concept for large offshore wind turbines[C]// ASME 2018 37th International Conference on Ocean, Madrid, Spain, 2018.
[8] 李秋辰, 陈兵, 刘雅楠. 一种新型Semi-Spar式海上风机平台系泊系统优化分析[J]. 海洋技术学报, 2019, 38(4): 85-90.
LI Q C, CHEN B, LIU Y N.Optimization analysis on the mooring system of a new type of Semi-Spar wind turbine platform[J]. Journal of ocean technology, 2019, 38(4): 85-90.
[9] 邬再新, 王亚祥, 李华兵, 等. 新型浮式风机基础的概念设计与性能研究[J]. 现代制造工程, 2019, 11(7): 136-141, 148.
WU Z X, WANG Y X, LI H B, et al.Conceptual design and performance analysis of new floating foundation for the wind turbines[J]. Modern manufacturing engineering, 2019, 11(7): 136-141, 148.
[10] ROBERTSON A N, JONKMAN J M.Loads analysis of several offshore floating wind turbine concepts[R].National Renewable Energy Laboratory (U.S.), 2011.
[11] IEC 61400-3-2009, Wind turbines-part 3: design requirements for offshore wind turbines[S].
[12] 叶小嵘, 张亮, 吴海涛, 等. 平台运动对海上浮式风机的气动性能影响研究[J]. 华中科技大学学报(自然科学版), 2012, 40(3): 123-126.
YE X R, ZHANG L, WU H T, et al.Influence of platform motion response on aerodynamic performance of floating offshore wind turbine[J]. Journal of Huazhong University of Science and Technology(natural science edition), 2012, 40(3): 123-126.
[13] WAN L, GAO Z, MOAN T, et al.Comparative experimental study of the survivability of a combined wind and wave energy converter in two testing facilities[J]. Ocean engineering, 2016, 111(1): 82-94.
基金
国家自然科学基金(52075305); 山东省高等学校青创科技支持计划(2019KJB031)