计及激励型需求响应的热电互联虚拟电厂优化调度

师阳, 李宏伟, 陈继开, 刘鸿鹏

太阳能学报 ›› 2023, Vol. 44 ›› Issue (4) : 349-358.

PDF(1793 KB)
欢迎访问《太阳能学报》官方网站,今天是
PDF(1793 KB)
太阳能学报 ›› 2023, Vol. 44 ›› Issue (4) : 349-358. DOI: 10.19912/j.0254-0096.tynxb.2021-1524

计及激励型需求响应的热电互联虚拟电厂优化调度

  • 师阳1, 李宏伟2, 陈继开2, 刘鸿鹏2
作者信息 +

OPTIMAL SCHEDULING OF THERMOELECTRIC INTERCONNECTION VIRTUAL POWER PLANT CONSIDERIGN INCENTIVE DEMAND RESPONSE

  • Shi Yang1, Li Hongwei2, Chen Jikai2, Liu Hongpeng2
Author information +
文章历史 +

摘要

目前,对多能量虚拟电厂在多种不确定性条件下的优化调度问题研究存在不足。针对这些不确定性问题,提出计及激励型需求响应的热电互联虚拟电厂优化调度模型。首先,针对分布式能源发电的不确定性,根据不同时刻风速、光照强度相关性,利用Student-T Copula函数得到风光发电场景;其次,综合考虑电热相关约束,建立以虚拟电厂效益最大为目标函数的优化调度模型;然后,采用改进型多元宇宙算法对所提出的模型进行优化求解;最后,通过算例仿真,验证所提出的优化调度模型能够平缓负荷曲线,减少环境污染,提高虚拟电厂整体经济效益。

Abstract

At present, the research on optimal scheduling of multi energy virtual power plants under various uncertainties is insufficient. To solve these uncertain problems, an optimal scheduling model of thermoelectric interconnected virtual power plant considering incentive demand response is proposed. Firstly, aiming at the uncertainty of distributed energy generation, according to the correlation of wind speed and solar intensity at different times, the wind power and photovoltaic power generation scenarios are obtained by using Student-T copula function. Secondly, considering the thermoelectric constraints, the optimal scheduling model taking the maximum benefit of virtual power plant as the objective function is established. Then, the improved multi-verse optimizer algorithm is used to optimize the proposed model. Finally, an example is given to verify the proposed optimal scheduling model, indicating that the model can smooth the load curve, reduce environmental pollution and improve the overall economic benefits of the virtual power plant.

关键词

虚拟电厂 / 热电互联 / 柔性负荷 / 需求响应 / 场景生成 / 多元宇宙算法

Key words

virtual power plant / thermoelectric interconnection / flexible load / demand response / scenario generation / multi-unirerse algorithm

引用本文

导出引用
师阳, 李宏伟, 陈继开, 刘鸿鹏. 计及激励型需求响应的热电互联虚拟电厂优化调度[J]. 太阳能学报. 2023, 44(4): 349-358 https://doi.org/10.19912/j.0254-0096.tynxb.2021-1524
Shi Yang, Li Hongwei, Chen Jikai, Liu Hongpeng. OPTIMAL SCHEDULING OF THERMOELECTRIC INTERCONNECTION VIRTUAL POWER PLANT CONSIDERIGN INCENTIVE DEMAND RESPONSE[J]. Acta Energiae Solaris Sinica. 2023, 44(4): 349-358 https://doi.org/10.19912/j.0254-0096.tynxb.2021-1524
中图分类号: TM734   

参考文献

[1] 王宣元, 刘敦楠, 刘蓁, 等. 泛在电力物联网下虚拟电厂运营机制及关键技术[J]. 电网技术, 2019, 43(9): 3175-3183.
WANG X Y, LIU D N, LIU Z, et al.Operation mechanism and key technologies of virtual power plant under ubiquitous internet of things[J]. Power system technology, 2019, 43(9): 3175-3183.
[2] 夏榆杭, 刘俊勇, 冯超, 等. 计及需求响应的虚拟发电厂优化调度模型[J]. 电网技术, 2016, 40(6): 1666-1674.
XIA Y H, LIU J Y, FENG C, et al.Optimal scheduling model of virtual power plant considering demand response[J]. Power system technology, 2016, 40(6): 1666-1674.
[3] 袁桂丽, 贾新潮, 陈少梁, 等. 虚拟电厂源-荷协调多目标优化调度[J]. 太阳能学报, 2021, 42(5): 105-112.
YUAN G L, JIA X C, CHEN S L, et al.Multiobjective optimal dispatch considering source-load coordination for virtual power plant[J]. Acta energiae solaris sinica, 2021, 42(5): 105-112.
[4] 韩江丽, 肖白, 韩江乐. 含风光水气火蓄的多能源电力系统日运行优化调度方法[J]. 东北电力大学学报, 2020, 40(3): 50-58.
HAN J L, XIAO B, HAN J L.A daily operation scheduling method of multi-energy power system with wind-photovoltaic-hydro-gas-thermal-pumped storage[J]. Journal of Northeast Electric Power University, 2020, 40(3): 50-58.
[5] VAYÁ M G, ANDERSSON G.Self scheduling of plug-in electric vehicle aggregator to provide balancing services for wind power[J]. IEEE transactions on sustainable energy, 2016, 7(2): 886-899.
[6] LIU N, HE L, YU X H, et al.Multiparty energy management for grid-connected microgrids with heat and electricity coupled demand response[J]. IEEE transactions on industrial informatics, 2018, 14(5): 1887-1897.
[7] 蒋焱. 风电供暖替代传统燃煤供暖的经济性分析[J]. 太阳能, 2019(5): 17-20.
JIANG Y.Economic analysis of wind power heating instead of traditional coal-fired heating[J]. Solar energy, 2019(5): 17-20.
[8] 陈厚合, 褚云溪, 张撼难, 等. 计及需求响应的风电并网系统可用输电能力计算[J]. 东北电力大学学报, 2019, 39(5): 1-8.
CHEN H H, CHU Y X, ZHANG H N, et al.Calculation of available transfer capability of wind power grid-connected system considering demand response[J]. Journal of Northeast Electric Power University, 2019, 39(5): 1-8.
[9] 何蕾. 基于需求侧综合响应的热电联供型微网运行优化[J]. 电测与仪表, 2018, 55(7): 47-52, 61.
HE L.Optimal operation of combined heat and power micro-grid based on integrated demand response[J]. Electrical measurement & instrumentation, 2018, 55(7): 47-52, 61.
[10] 袁桂丽, 陈少梁, 刘颖, 等. 基于分时电价的虚拟电厂经济性优化调度[J]. 电网技术, 2016, 40(3): 826-832.
YUAN G L, CHEN S L, LIU Y.et al.Economic optimal dispatch of virtual power plant based on time-of-use power price[J]. Power system technology, 2016, 40(3): 826-832.
[11] 张立辉, 辛禾, 李秋燕, 等. 考虑需求响应的风光燃储集成虚拟电厂双层随机调度优化模型[J]. 可再生能源, 2017, 35(10): 1514-1522.
ZHANG L H, XIN H, LI Q Y, et al.A bi-level stochastic scheduling optimization model for virtual power plant connecting with wind-photovoltaic-gas-energy storage system with considering uncertainty and demand response[J]. Renewable energy resources, 2017, 35(10): 1514-1522.
[12] LU X H, LIU Z X, LI M, et al.A robust optimization approach for optimal load dispatch of community energy hub[J]. Applied energy, 2020, 259: 114195.
[13] ZHU Y S, GAO H Y, XIAO J M, et al.Dynamic multi-objective dispatch considering wind power and electric vehicles with probabilistic characteristics[J]. IEEE access, 2019, 7: 185634-185653.
[14] 江叶峰, 熊浩, 胡宇, 等. 考虑电热综合需求响应的虚拟电厂优化调度[J]. 电力建设, 2019, 40(12): 61-69.
JIANG Y F, XIONG H, HU Y, et al.Optimal dispatching of virtual power plants considering comprehensive demand response of electricity and heat loads[J]. Electric power construction, 2019, 40(12): 61-69.
[15] BORUJENI M S, FOROUD A A, DIDEBAN A.Wind speed scenario generation based on dependency structure analysis[J]. Journal of wind engineering and industrial aerodynamics, 2018, 172: 453-465.
[16] DONG H Z, LI S D, DONG H Y, et al.Coordinated scheduling strategy for distributed generation considering uncertainties in smart grids[J]. IEEE access, 2020, 8: 86171-86179.
[17] 周升彧, 戴赛, 许丹,等. 考虑源侧灵活性改造及可调节电热负荷的电热联合调度模型[J]. 电网技术, 2020, 44(6): 2254-2261.
ZHOU S Y, DAI S, XU D, et al.Optimal dispatching model of combined heat and power system considering source-side flexibility improvement and controllable heat-power load[J]. Power system technology, 2020, 44(6): 2254-2261.
[18] 税月, 刘俊勇, 高红均, 等. 考虑风电不确定性的电热综合系统分布鲁棒协调优化调度模型[J]. 中国电机工程学报, 2018, 38(24): 7235-7247.
SHUI Y, LIU J Y, GAO H J, et al.A distributionally robust coordinated dispatch model for integrated electricity and heating systems considering uncertainty of wind power[J]. Proceedings of the CESS, 2018, 38(24): 7235-7247.
[19] MIRJALILI S, MIRJALILI S M, HATAMLOU A.Multi-verse optimizer: a nature-inspired algorithm for global optimization[J]. Neural computing and applications, 2016, 27(2): 495-513.
[20] 熊保玉. 基于改进多元宇宙算法的零件平面度测量研究[J]. 光电子·激光, 2021, 32(3): 251-256.
XIONG B Y.Flatness measurement of parts based on improved multi verse optimization[J]. Journal of optoelectronics · laser, 2021, 32(3): 251-256.
[21] 袁桂丽, 王琳博, 王宝源. 基于虚拟电厂“热电解耦”的负荷优化调度及经济效益分析[J]. 中国电机工程学报, 2017, 37(17): 4974-4985.
YUAN G L, WANG L B, WANG B Y.Optimal dispatch of heat-power load and economy benefit analysis based on decoupling of heat and power of virtual power plant[J]. Proceedings of the CESS, 2017, 37(17): 4974-4985.

基金

国家自然科学基金(52077030); 南通市基础科学研究面上项目(JC22022080)

PDF(1793 KB)

Accesses

Citation

Detail

段落导航
相关文章

/