AA-CAES系统释能过程安全减出力控制仿真分析

杨大慧, 文贤馗, 钟晶亮, 冯庭勇, 邓彤天, 蔡永翔

太阳能学报 ›› 2023, Vol. 44 ›› Issue (4) : 283-289.

PDF(1808 KB)
欢迎访问《太阳能学报》官方网站,今天是
PDF(1808 KB)
太阳能学报 ›› 2023, Vol. 44 ›› Issue (4) : 283-289. DOI: 10.19912/j.0254-0096.tynxb.2021-1529

AA-CAES系统释能过程安全减出力控制仿真分析

  • 杨大慧1,2, 文贤馗3, 钟晶亮3, 冯庭勇1,2, 邓彤天3, 蔡永翔3
作者信息 +

SIMULATION ANALYSIS OF RUNBACK CONDITIONS ON ENERGY RELEASE PROCESS OF AA-CAES SYSTEM

  • Yang Dahui1,2, Wen Xiankui3, Zhong Jingliang3, Feng Tingyong1,2, Deng Tongtian3, Cai Yongxiang3
Author information +
文章历史 +

摘要

针对先进压缩空气储能(advanced adiabatic compressed air energy storage, AA-CAES)系统释能发电阶段储热或储气能量不足时,膨胀发电机组将被迫突发停机,负荷突降会对电网稳定性造成冲击的问题,提出AA-CAES系统释能发电阶段安全减出力控制的控制策略,同时基于10 MW AA-CAES系统建立安全减出力控制仿真回路,探讨降负荷速率、蓄热罐水位限定值等关键参数对AA-CAES系统发电过程的影响。仿真结果表明,投入安全减出力控制回路能够有效延长AA-CAES系统释能发电时间,为电网提供应急安全时间,能有效缓解突减负荷对电网的冲击,具有广阔的推广应用空间。

Abstract

In energy release stage, advanced adiabatic compressed air energy storage (AA-CAES) system will be forced to shut down suddenly when heat storage energy or gas storage energy is insufficient, and load shedding will impact the stability of power systems. In view of the above problem, this paper proposes a control strategy of runback (RB) in the energy release stage of AA-CAES systems, and establishes relevant control simulation circuit adapting to a 10 MW AA-CAES system. Moreover, the influence of load shedding rate and the limit values of hot tank liquid level on the power generation process of AA-CAES systems is discussed in this paper. The simulation results show that the control strategy of runback can prolong the effective power generation time of AA-CAES system, and a long safety emergency duration for power systems is provided which effectively alleviates the impact of sudden load reduction on power grid and has broad application prospect.

关键词

压缩空气储能 / 释能发电 / 减出力 / 控制策略

Key words

compressed air energy storage / energy release / runback / control strategy

引用本文

导出引用
杨大慧, 文贤馗, 钟晶亮, 冯庭勇, 邓彤天, 蔡永翔. AA-CAES系统释能过程安全减出力控制仿真分析[J]. 太阳能学报. 2023, 44(4): 283-289 https://doi.org/10.19912/j.0254-0096.tynxb.2021-1529
Yang Dahui, Wen Xiankui, Zhong Jingliang, Feng Tingyong, Deng Tongtian, Cai Yongxiang. SIMULATION ANALYSIS OF RUNBACK CONDITIONS ON ENERGY RELEASE PROCESS OF AA-CAES SYSTEM[J]. Acta Energiae Solaris Sinica. 2023, 44(4): 283-289 https://doi.org/10.19912/j.0254-0096.tynxb.2021-1529
中图分类号: TK39    TM61   

参考文献

[1] 张新敬, 陈海生, 刘金超, 等. 压缩空气储能技术研究进展[J]. 储能科学与技术, 2012, 1(1): 26-40.
ZHANG X J, CHEN H S, LIU J C, et al.Research progress in compressed air energy storage system: a review[J]. Energy storage science and technology, 2012, 1(1): 26-40.
[2] 韩中合, 安鹏, 郭森闯, 等. 基于太阳能辅热的AA-CAES热力性能分析[J]. 太阳能学报, 2020, 41(8): 243-250.
HAN Z H, AN P, GUO S C, et al.Thermodynamics performances analysis of advanced adiabatic compressed air energy storage system based on solar auxiliary heating[J]. Acta energiae solaris sinica, 2020, 41(8): 243-250.
[3] 文军, 刘楠, 裴杰, 等. 储能技术全生命周期度电成本分析[J]. 热力发电, 2021, 50(8): 24-29.
WEN J, LIU N, PEI J, et al.Life cycle cost analysis for energy storage technology[J]. Thermal power generation, 2021, 50(8): 24-29.
[4] 梅生伟, 李瑞, 陈来军, 等. 先进绝热压缩空气储能技术研究进展及展望[J]. 中国电机工程学报, 2018, 38(10): 2893-2907.
MEI S W, LI R, CHEN L J, et al.An overview and outlook on advanced adiabatic compressed air energy storage technique[J]. Proceedings of the CSEE, 2018, 38(10): 2893-2907.
[5] 文贤馗, 张世海, 邓彤天, 等. 大容量电力储能调峰调频性能综述[J]. 发电技术, 2018, 39(6): 487-492.
WEN X K, ZHANG S H, DENG T T, et al.A summary of large capacity power energy storage peak regulation and frequency adjustment performance[J]. Power generation technology, 2018, 39(6): 487-492.
[6] 张新敬. 压缩空气储能系统若干问题的研究[D]. 北京: 中国科学院工程热物理研究所, 2011.
ZHANG X J.Investigation on compressed air energy storage system[D]. Beijing: Institute of Engineering Thermophysics of Chinese Academy of Sciences, 2011.
[7] 韩中合, 王珊, 胡志强, 等. AA-CAES+CSP系统性能及关键参数分析[J]. 太阳能学报, 2021, 42(2): 322-329.
HAN Z H, WANG S, HU Z Q, et al.Analysis of performance and key parameters of AA-CAES+CSP system[J]. Acta energiae solaris sinica, 2021, 42(2): 322-329.
[8] 杜鹏, 崔浩杰. 压缩空气储能商业电站在山东肥城并网[N]. 国家电网报, 2021-08-09(3).
DU P, CUI H J. Compressed air energy storage commercial power station connected to the grid in Feicheng, Shandong Province[N]. State Grid News, 2021-08-09(3).
[9] 李广阔, 王国华, 薛小代, 等. 金坛盐穴压缩空气储能电站调相模式设计与分析[J]. 电力系统自动化, 2021, 45(19): 91-99.
LI G K, WANG G H, XUE X D, et al.Design and analysis of condenser mode for Jintan salt cavern compressed air energy storage plant of china[J]. Automation of electric power systems, 2021, 45(19): 91-99.
[10] 吴晨曦, 陈泽昊, 张杰, 等. 考虑先进绝热压缩空气储能的风力发电系统成本/供电可靠性评估[J]. 电力自动化设备, 2020, 40(2): 62-68.
WU C X, CHEN Z H, ZHANG J, et al.Cost/power supply reliability assessment of wind power generation system considering advanced adiabatic compressed air energy storage[J]. Electric power automation equipment, 2020, 40(2): 62-68.
[11] 李盼, 杨晨, 陈雯, 等. 压缩空气储能系统动态特性及其调节系统[J]. 中国电机工程学报, 2020, 40(7): 2295-2305.
LI P, YANG C, CHEN W, et al.Dynamic characteristics of compressed air energy storage system and the regulation system[J]. Proceedings of the CSEE, 2020, 40(7): 2295-2305.
[12] 杨晨, 李盼, 孙溧, 等. 压缩空气储能膨胀发电机甩负荷防超速策略[J]. 太阳能学报, 2021, 42(11): 449-454.
YANG C, LI P, SUN L.Improved strategy for load shedding anti-overspeed of compressed air energy storage expansion generators[J]. Acta energiae solaris sinica, 2021, 42(11): 449-454.
[13] 邓敏. 基于压缩空气储能的风储联合系统运行控制研究[D]. 保定: 华北电力大学, 2019.
DENG M.Research on operation control of wind-storage combined system based on compressed air energy storage[D]. Baoding: North China Electric Power University, 2019.
[14] 李姚旺, 苗世洪, 尹斌鑫, 等. 计及先进绝热压缩空气储能多能联供特性的微型综合能源系统优化调度模型[J]. 发电技术, 2020, 41(1): 40-49.
LI Y W, MIAO S H, YIN B X, et al.Optimal dispatch model for micro integrated energy system considering multi-carrier energy generation characteristic of advanced adiabatic compressed air energy storage[J]. Power generation technology, 2020, 41(1): 40-49.
[15] 韩中合, 郭森闯. AA-CAES系统释能过程运行特性分析[J]. 太阳能学报, 2020, 41(1): 295-301.
HAN Z H, GUO S C.Analysis of operation characteristic on discharge process of AA-CAES system[J]. Acta energiae solaris sinica, 2020, 41(1): 295-301.
[16] 何青, 付海伦, 康浩强. 新型变压比先进绝热压缩空气储能系统及其热力学分析[J]. 热力发电, 2020, 49(8): 36-42.
HE Q, FU H L, KANG H Q.Thermodynamic analysis of novel advanced adiabatic compressed air energy storage system with variable pressure ratio[J]. Thermal power generation, 2020, 49(8): 36-42.
[17] 李雪梅. 先进绝热压缩空气储能系统部件特性对系统性能影响的研究[D]. 北京: 中国科学院大学, 2015.
LI X M.Study on influence of components characteristics for advanced adiabatic compressed air energy storage system[D]. Beijing: University of Chinese Academy of Sciences, 2015.
[18] 胡厚鹏. 分布式微电网中压缩空气储能系统的动态建模[D]. 贵阳: 贵州大学, 2018.
HU H P.Dynamic modeling of compressed air energy storage system in distributed microgrid[D]. Guiyang: Guizhou University, 2018.

基金

贵州省科技支撑计划(黔科合支撑[2020]2Y064); 国家重点研发计划(2017YFB0903600)

PDF(1808 KB)

Accesses

Citation

Detail

段落导航
相关文章

/