基于凹凸前缘方法的风力机翼型气动噪声研究

刘霞, 张一楠, 曹慧晶, 张明明, 王国付

太阳能学报 ›› 2023, Vol. 44 ›› Issue (4) : 125-131.

PDF(3383 KB)
欢迎访问《太阳能学报》官方网站,今天是
PDF(3383 KB)
太阳能学报 ›› 2023, Vol. 44 ›› Issue (4) : 125-131. DOI: 10.19912/j.0254-0096.tynxb.2021-1531

基于凹凸前缘方法的风力机翼型气动噪声研究

  • 刘霞1~3, 张一楠2~4, 曹慧晶2~5, 张明明2~6, 王国付1
作者信息 +

STUDY ON AERODYNAMIC NOISE OF WIND AIRFOIL BASED ON CONCAVE-CONVEX LEADING-EDGE METHOD

  • Liu Xia1-3, Zhang Yi'nan2-4, Cao Huijing2-5, Zhang Mingming2-6, Wang Guofu1
Author information +
文章历史 +

摘要

该文采用实验测量和数值计算相结合的方法,以DU93-W-210翼型为研究对象,研究仿生凹凸前缘结构对其降噪效果的影响。运用远场麦克风阵列获得光滑前缘翼型和凹凸前缘翼型的气动噪声,并通过数值计算得到翼型表面流场结果。通过对实验和数值计算结果的分析发现:凹凸前缘方法能有效抑制边界层分离,控制翼型吸力面涡量的团状分布,减小翼型表面的压力脉动,分解大尺度高强度脱落涡为小尺度低强度周期性脱落涡,使得仿生凹凸前缘翼型有明显的降低气动噪声的作用;具有凹凸前缘的幅值为0.24cc为平均弦长)、波长为0.11c的仿生翼型降噪效果更为突出。

Abstract

In this paper, the methods of experimental measurement and numerical calculation are used to analyze the control of the leading-edge protuberances on reducing the aerodynamic noise for the DU93-W-210 airfoil. The far-field microphone array is used to obtain the aerodynamic noise of the baseline airfoil and airfoil with leading-edge protuberances, and the result of flow field on airfoil surface is obtained through numerical calculation. Through analysis of the experimental and calculation results, it is found that, the method of leading-edge protuberances can effectively suppress the boundary layer separation, thereby controlling the vortex distribution and reducing the pressure fluctuation of the suction surface of the airfoil, disperses the large-scale shedding vortices, and decomposes it into the small-scale periodic shedding vortices with low-strength,which makes the leading-edge protuberances have a significant effect on the reducing of aerodynamic noise. Moreover, the effect of noise reduction is more prominent for wavy airfoil with the amplitude of 0.24cc: the average chord length) and the wavelength of 0.11c.

关键词

凹凸前缘 / 风力机翼型 / 气动噪声 / 数值模拟 / 气动噪声测试

Key words

leading-edge protuberance / wind airfoil / aerodynamic noise / numerical simulation / aerodynamic noise testing

引用本文

导出引用
刘霞, 张一楠, 曹慧晶, 张明明, 王国付. 基于凹凸前缘方法的风力机翼型气动噪声研究[J]. 太阳能学报. 2023, 44(4): 125-131 https://doi.org/10.19912/j.0254-0096.tynxb.2021-1531
Liu Xia, Zhang Yi'nan, Cao Huijing, Zhang Mingming, Wang Guofu. STUDY ON AERODYNAMIC NOISE OF WIND AIRFOIL BASED ON CONCAVE-CONVEX LEADING-EDGE METHOD[J]. Acta Energiae Solaris Sinica. 2023, 44(4): 125-131 https://doi.org/10.19912/j.0254-0096.tynxb.2021-1531
中图分类号: TK81   

参考文献

[1] 吴正人, 李曙光, 刘梅, 等. 带脊状结构风力机翼型的噪声特性研究[J]. 太阳能学报, 2021, 42(3): 83-89.
WU Z R, LI S G, LIU M, et al.Aerodynamic and noise characteristics of airfoil with ridged structure[J]. Acta energiae solaris sinica, 2021, 42(3): 83-89.
[2] 翟建, 张伟伟, 王焕玲. 大迎角前体涡控制方法综述[J]. 空气动力学学报, 2017, 35(3): 354-367.
ZHAI J, ZHANG W W, WANG H L.Reviews of forebody vortex control method at high angles of attack[J]. Acta aerodynamica sinica, 2017, 35(3): 354-367.
[3] 汪瑞欣, 赵振宙, 王同光, 等. 锯齿尾缘DU91-W2-250风力机翼型气动及噪声特性分析[J]. 太阳能学报, 2020, 41(12): 221-228.
WANG R X, ZHAO Z Z, WANG T G, et al.Research on aerodynamics and noise characteristics of DU91-W2-250 airfoil of wind blade with serrated trailing edge[J]. Acta energiae solaris sinica, 2020, 41(12): 221-228.
[4] 王松岭, 李曙光, 刘梅, 等. 带脊状结构的NACA0018翼型气动噪声特性[J]. 科学技术与工程, 2019, 19(7): 166-171.
WANG S L,LI S G,LIU M,et al.Aerodynamic noise characteristics of NACA0018 airfoil with ridged structure[J]. Science technology and engineering, 2019, 19(7): 166-171.
[5] 李典, 刘小民. 几种仿生翼型气动性能及噪声特性研究[J]. 工程热物理学报, 2015, 36(12): 2629-2632.
LI D, LIU X M.Numerical study on aerodynamic performance and noise characteristic of several bionic airfoils[J]. Journal of engineering thermophysics, 2015, 36(12): 2629-2632.
[6] 姜虹旭. 基于涡流发生器的流动控制与降噪技术研究[D]. 哈尔滨: 哈尔滨工程大学, 2019.
JIANG H X.The mechanism of the flow control and noise reduction based on the vortex generator[D]. Harbin: Harbin Engineering University, 2019.
[7] TZE P C, DUBOIS E.Optimization of the poro-serrated trailing edges for airfoil broadband noise reduction[J]. Journal of the Acoustical Society of America, 2016, 140(2): 1361.
[8] HERSH A S, HAYDEN R E.Aerodynamic sound radiation from lifting surfaces with and without leading-edge serrations: NASA CR-114370 [R]. Washington DC: NASA, 1971.
[9] SODERMAN P T.Aerodynamic effects of leading-edge serrations on a two-dimensional airfoil: NASA TM-X-2643[R]. Washington DC: NASA, 1972.
[10] SCHWIND R G, ALLEN H J.The effect s of leading-edge serrations on reducing flow unsteadiness about airfoils-an experimental and analytical investigation: NASA CR-2344[R]. Washington DC: NASA, 1973.
[11] KAZIN S B, PAAS J E, MINZNER W R.Acoustic testing of a 1.5 pressure ratio low tip speed fan with a serrated rotor: NASA CR-120846[R]. Washington DC: NASA, 1974.
[12] FISH F E, BATTLE J M.Hydrodynamic design of the hump back whale flipper[J]. Journal of morphology, 1995, 225(1): 51-60.
[13] JOHARI H, HENOCH C, CUSTODIO D, et al.Effects of leading-edge protuberances on airfoil performance[J]. AIAA journal, 2007, 45(11): 2634-2642.
[14] HANSON K L, KELSO R M, DALL Y B B. Performance variations of leading-edge tubercles for distinct air profiles[J]. AIAA journal, 2011, 49(1): 185-194.
[15] GUERREIRO J L E, SOUSA J M M. Low-Reynolds number effects in passive stall control using sinusoidal leading edges[J]. AIAA journal, 2012, 50(2): 461-469.
[16] ZHANG M M, WANG G F, XU J Z.Aerodynamic control of low-Reynold-number airfoil with leading-edge protuberances[J]. AIAA journal, 2013, 51(8): 1960-1971.
[17] 王国付, 张明明, 徐建中. 风电仿生大厚翼型气动控制实验研究[J]. 工程热物理学报, 2017, 38(11): 2363-2366.
WANG G F, ZHANG M M, XU J Z.Experimental study on wavy edge aerodynamic characteristics of big thick of wind turbine airfoil[J]. Journal of engineering thermophysics, 2017, 38(11): 2363-2366.
[18] TURNER J M, KIM J W.Aeroacoustic source mechanisms of a wavy leading edge undergoing vortical disturbances[J]. Journal of fluid mechanics, 2017, 811: 582-611.
[19] LAU A H S, KIM J. The effect of wavy leading edges on aerofoil-turbulence interaction noise[J]. Journal of sound and vibration, 2013, 332(24): 6234-6253.
[20] CLAIR V, POLACSEK C, LE GARREC T, et al.Experimental and numerical investigation of turbulence-airfoil noise reduction using wavy edges[J]. AIAA journal, 2013, 51(11): 2695-2713.
[21] LANGTRY R B, MENTER F R.Correlation-based transition modeling for unstructured parallelized computational fluid dynamics codes[J]. AIAA journal, 2009, 47(12): 2894-2906.
[22] HANSEN K L, KELSO R M, DOOLAN C J.Reduction of flow induced tonal noise through leading edge tubercle modifications[C]//AIAA/CEAS Aeroacoustics Conference, Berlin, Germany, 2010.

基金

国家自然科学基金(52106280; 51736008); 中国科学院洁净能源先导科技专项(XDA21050303)

PDF(3383 KB)

Accesses

Citation

Detail

段落导航
相关文章

/