为提高生物质与聚乙烯共热解中苯、甲苯、乙苯、二甲苯和萘(简称)BTEXN和轻烯烃的产量,同时抑制C21+蜡的形成,通过TG-MS/FTIR和Py-GC/MS探究催化共热解中HZSM-5和改性HZSM-5对玉米秸秆和HDPE相互作用的影响,并对BTEXN进行定量分析。结果表明,在HZSM-5的催化共热解中,HZSM-5可促进玉米秸秆与HDPE之间的相互反应,芳烃和轻烃产率增加。相比HZSM-5,在改性HZSM-5的催化共热解中,改性HZSM-5可促进轻烯烃、C5-C11脂肪烃和芳烃的析出,并抑制$C^{+}_{21}$蜡的形成。Cu、Fe和Ce改性可促进单环芳烃的形成,同时提高BTEXN产量,相比HZSM-5分别提高20.99、25.43和20.89 mg/g,而P改性会抑制BTEXN形成。对于形成芳烃的Diels-Alder反应,Fe和Ce改性表现出较强的催化效果,而Cu改性对烃池反应催化效果较强。此外积碳分析表明,Fe和P改性具有较强的抗积碳能力。
Abstract
To improve the yield of BTEXN and light olefins in co-pyrolysis of biomass with polyethylene while inhibiting the formation of $C^{+}_{21}$ waxes, the effects of HZSM-5 and modified HZSM-5 in catalytic co-pyrolysis on the interaction between corn stover and HDPE are investigated by TG-MS/FTIR and Py-GC/MS. The results show that in the catalytic co-pyrolysis of HZSM-5, HZSM-5 promotes the mutual reaction between corn stover and HDPE, and the aromatic and light hydrocarbon yields increase. Compared with HZSM-5, in the catalytic co-pyrolysis of modified HZSM-5, modified HZSM-5 promotes the precipitation of light olefins, C5-C11 aliphatic hydrocarbons and aromatics, and inhibits the formation of $C^{+}_{21}$ waxes. Cu, Fe and Ce modifications promote monocyclic aromatic hydrocarbon formation while increasing BTEXN yield by 20.99 mg/g, 25.43 mg/g and 20.89 mg/g respectively, compared to HZSM-5. Inversely, P modification inhibits BTEXN formation. For the Diels-Alder reaction, which forms aromatics, Fe and Ce modifications show stronger catalytic effect, while Cu modifications are more effective in catalyzing the hydrocarbon pool reaction. In addition, carbon accumulation analysis show that Fe and P modifications have stronger resistance to carbon accumulation.
关键词
生物质 /
高密度聚乙烯类 /
热解 /
BTEXN /
HZSM-5
Key words
biomass /
high density polyethylene /
pyrolysis /
BTEXN /
HZSM-5
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] ZECCA A, CHIARI L.Fossil-fuel constraints on global warming[J]. Energy policy, 2010, 38(1): 1-3.
[2] ZHOU C H, XIA X, LIN C X, et al.Catalytic conversion of lignocellulosic biomass to fine chemicals and fuels[J]. Chemical Society Reviews, 2011, 40(11): 5588-5617.
[3] SHAFAGHAT H, LEE H W, TSANG Y F, et al.In-situ and ex-situ catalytic pyrolysis/co-pyrolysis of empty fruit bunches using mesostructured aluminosilicate catalysts[J]. Chemical engineering journal, 2019, 366: 330-338.
[4] LI X Y, LI J, ZHOU G Q, et al.Enhancing the production of renewable petrochemicals by co-feeding of biomass with plastics in catalytic fast pyrolysis with ZSM-5 zeolites[J]. Applied catalysis A: general, 2014, 481: 173-182.
[5] DORADO C, MULLEN C A, BOATENG A A.H-ZSM5 Catalyzed co-pyrolysis of biomass and plastics[J]. ACS sustainable chemistry & engineering, 2014, 2(2): 301-311.
[6] HASSAN H, LIM J K, HAMEED B H.Recent progress on biomass co-pyrolysis conversion into high-quality bio-oil[J]. Bioresource technology, 2016, 221: 645-655.
[7] WON E H, HEUI K D, JUNGHO J, et al.Recent advances in catalytic co-pyrolysis of biomass and plastic waste for the production of petroleum-like hydrocarbons[J]. Bioresource technology, 2020, 310: 123473.
[8] TYNIL P, PAKKANEN T T.Acidic properties of ZSM-5 zeolite modified with Ba2+, Al3+ and La3+ ion-exchange[J]. Journal of molecular catalysis A: chemical, 1996, 110(2): 153-161.
[9] LENARDA M, ROS M D, CASAGRANDE M, et al.Post-synthetic thermal and chemical treatments of H-BEA zeolite: effects on the catalytic activity[J]. Inorganica chimica acta, 2003, 349: 195-202.
[10] LU J Y, LIU Y C, LI N.Fe-modified HZSM-5 catalysts for ethanol conversion into light olefins[J]. Journal of natural gas chemistry, 2011, 20(4): 423-427.
[11] RAZZAQ M, ZEESHAN M, QAISAR S, et al.Investigating use of metal-modified HZSM-5 catalyst to upgrade liquid yield in co-pyrolysis of wheat straw and polystyrene[J]. Fuel, 2019, 257: 116119.
[12] GUISNET M, COSTA L, RIBEIRO F R.Prevention of zeolite deactivation by coking[J]. Journal of molecular catalysis A: chemical, 2009, 305(1-2): 69-83.
[13] KIM Y M, JAE J, KIM B S, et al.Catalytic co-pyrolysis of torrefied yellow poplar and high-density polyethylene using microporous HZSM-5 and mesoporous Al-MCM-41 catalysts[J]. Energy conversion and management, 2017, 149: 966-973.
[14] CARLSON T R, JAE J, LIN Y C, et al.Catalytic fast pyrolysis of glucose with HZSM-5: the combined homogeneous and heterogeneous reactions[J]. Journal of catalysis, 2010, 270(1): 110-124.
[15] LIU Q, WANG S R, ZHENG Y, et al.Mechanism study of wood lignin pyrolysis by using TG-FTIR analysis[J]. Journal of analytical and applied pyrolysis, 2008, 82(1): 170-177.
[16] HANSSON K M, SAMUELSSON J, TULLIN C, et al.Formation of HNCO, HCN, and NH3 from the pyrolysis of bark and nitrogen-containing model compounds[J]. Combustion and flame, 2004, 137(3): 265-277.
[17] ZHANG L Q, LI K, ZHU X F.Study on Two-step Pyrolysis of soybean stalk by TG-FTIR and Py-GC/MS[J]. Journal of analytical and applied pyrolysis, 2017, 127:91-98.
[18] MA Z Q, WANG J H, ZHOU H Z, et al.Relationship of thermal degradation behavior and chemical structure of lignin isolated from palm kernel shell under different process severities[J]. Fuel processing technology, 2018, 181: 142-156.
[19] WANG T, CHEN Y C, LI J P, et al.Co-pyrolysis behavior of sewage sludge and rice husk by TG-MS andresidue analysis[J]. Journal of cleaner production, 2019, 250(C): 119557.
[20] ELORDI G, OLAZAR M, LOPEZ G.Product yields and compositions in the continuous pyrolysis of high-density polyethylene in a conical spouted bed reactor[J]. Industrial & engineering chemistry research, 2011, 50(11): 6650-6659.
[21] ARABIOURRUTIA M, ELORDI G, LOPEZ G, et al.Characterization of the waxes obtained by the pyrolysis of polyolefin plastics in a conical spouted bed reactor[J]. Journal of analytical and applied pyrolysis,2012, 94: 230-237.
[22] ARTETXE M, LOPEZ G, AMUTIO M, et al. Light olefins from HDPE cracking in a two-step thermal and catalytic process[J]. Chemical engineering journal, 2012, 207-208: 27-34.
[23] CARLSON T R, CHENG Y T, JAE J, et al.Production of green aromatics and olefins by catalytic fast pyrolysis of wood sawdust[J]. Energy & environmental science, 2011, 4(1): 145-161.
[24] FROMENT G F.Kinetic modeling of hydrocarbon processing and the effect of catalyst deactivation by coke formation[J]. Catalysis reviews, 2008, 50(1): 1-18.
[25] CASTANO P, ELORDI G, OLAZAR M, et al.Insights into the coke deposited on HZSM-5, Hβ and HY zeolites during the cracking of polyethylene[J]. Applied catalysis B, 2011, 104(1-2): 91-100.
基金
沈阳市科技计划(21108926); 辽宁省教育厅项目(L201707)