基于多方面特征提取和迁移学习的风速预测

梁涛, 陈春宇, 谭建鑫, 井延伟

太阳能学报 ›› 2023, Vol. 44 ›› Issue (4) : 132-139.

PDF(2304 KB)
欢迎访问《太阳能学报》官方网站,今天是
PDF(2304 KB)
太阳能学报 ›› 2023, Vol. 44 ›› Issue (4) : 132-139. DOI: 10.19912/j.0254-0096.tynxb.2021-1535

基于多方面特征提取和迁移学习的风速预测

  • 梁涛1, 陈春宇1, 谭建鑫2, 井延伟2
作者信息 +

WIND SPEED PREDICTION BASED ON MULTIPLE FEATURE EXTRACTION AND TRANSFER LEARNING

  • Liang Tao1, Chen Chunyu1, Tan Jianxin2, Jing Yanwei2
Author information +
文章历史 +

摘要

为满足风电场远程集控中心高效、低成本预测不同地理位置风电场风速的要求,结合“离线训练,在线预测”的思想,提出一种基于多方面特征提取和迁移学习的多变量风速预测模型。离线模型融合双通道卷积神经网络和双向长短时记忆神经网络捕捉风速信息,学习各典型位置风电场的风速特性,然后迁移至任意风电场实现快速在线预测,通过改进的多目标蝗虫优化算法集成各典型风电场预测结果,进一步提高预测精度。最后通过河北一集控中心验证表明,该文所提模型的适应性与准确性均优于其他基线模型。

Abstract

In order to meet the requirements of remote control centers for efficient and low-cost wind speed prediction of wind farms at different locations, this paper proposes a multivariable wind speed prediction model based on multiple feature extraction and transfer learning by combining the idea of "offline training, online prediction". The offline model fuses wind speed information captured by two-channel convolutional neural network and bi-directional long-short-term memory neural network. Wind speed characteristics of wind farms at typical locations are learned, and then the wind speed characteristics are transferred to other wind farms to achieve online prediction. The prediction accuracy is further improved by using an improved multi-objective grasshopper optimization algorithm, which integrates the prediction results of each typical wind farm. Finally, the superiority of the model is verified by the data of a centralized control center in Hebei. The results show that the adaptability and accuracy of the proposed model are superior than that of other baseline models.

关键词

风能 / 风速预测 / 特征提取 / 卷积神经网络 / 双向长短时记忆神经网络 / 迁移学习 / 多目标蝗虫优化算法

Key words

wind energy / wind speed prediction / feature extraction / convolutional neural network / bi-directional long short-term memory network / transfer learning / multi-objective grasshopper optimization algorithm

引用本文

导出引用
梁涛, 陈春宇, 谭建鑫, 井延伟. 基于多方面特征提取和迁移学习的风速预测[J]. 太阳能学报. 2023, 44(4): 132-139 https://doi.org/10.19912/j.0254-0096.tynxb.2021-1535
Liang Tao, Chen Chunyu, Tan Jianxin, Jing Yanwei. WIND SPEED PREDICTION BASED ON MULTIPLE FEATURE EXTRACTION AND TRANSFER LEARNING[J]. Acta Energiae Solaris Sinica. 2023, 44(4): 132-139 https://doi.org/10.19912/j.0254-0096.tynxb.2021-1535
中图分类号: TK89    TM614   

参考文献

[1] 唐志军, 沈石水. “无人值班,少人值守”风电场及其集控中心的设计思考[J]. 风能, 2015(6): 58-62.
TANG Z J, SHEN S S.Design considerations for “unmanned, less manned” wind farms and centralized control centers[J]. Wind energy, 2015(6): 58-62.
[2] 何婷, 邓子夜, 李亦凡, 等. 新能源集控中心一体化平台关键技术的探究[J]. 中国水利水电科学研究院学报, 2021, 19(1): 183-188.
HE T, DENG Z Y, LI Y F, et al.Research on key technologies of integrated platform of new energy centralized control center[J]. Journal of China Institute of Water Resources and Hydropower Research, 2021, 19(1): 183-188.
[3] WANG K J, QI X X, LIU H D, et al.Deep belief network based k-means cluster approach for short-term wind power forecasting[J]. Energy, 2018, 165: 840-852.
[4] WANG H Z, LI G Q, WANG G B, et al.Deep learning based ensemble approach for probabilistic wind power forecasting[J]. Applied energy, 2017, 188: 56-70.
[5] 刘擘龙, 张宏立, 王聪, 等. 基于序列到序列和注意力机制的超短期风速预测[J]. 太阳能学报, 2021, 42(9): 286-294.
LIU B L, ZHANG H L, WANG C, et al.Ultra-short-term wind speed prediction based on sequence-to-sequence and attention mechanism[J]. Acta energiae solaris sinica, 2021, 42(9): 286-294.
[6] ZHANG G W, LIU D. Causal convolutional gated recurrent unit network with multiple decomposition methods for short-term wind speed forecasting[J]. Energy conversion and management, 2020, 226: 113500.1-113500.15.
[7] ZHANG S, CHEN Y, XIAO J H, et al.Hybrid wind speed forecasting model based on multivariate data secondary decomposition approach and deep learning algorithm with attention mechanism[J]. Renewable energy, 2021, 174: 688-704.
[8] CHEN Y, ZHANG S, ZHANG W Y, et al.Multifactor spatio-temporal correlation model based on a combination of convolutional neural network and long short-term memory neural network for wind speed forecasting[J]. Energy conversion and management, 2019, 185: 783-799.
[9] LIANG T, ZHAO Q, LYU Q Z, et al. A novel wind speed prediction strategy based on Bi-LSTM, MOOFADA and transfer learning for centralized control center[J]. Energy, 2021, 230: 120904.1-120904.16.
[10] 陈金富, 朱乔木, 石东源, 等. 利用时空相关性的多位置多步风速预测模型[J]. 中国电机工程学报, 2019, 39(7): 2093-2106.
CHEN J F, ZHU Q M, SHI D Y, et al.A multi-step wind speed prediction model for multiple sites leveraging spatio-temporal correlation[J]. Proceedings of the CSEE, 2019, 39(7): 2093-2106.
[11] NIU X S, WANG J Y.A combined model based on data preprocessing strategy and multi-objective optimization algorithm for short-term wind speed forecasting[J]. Applied energy, 2019, 241: 519-539.
[12] 柳成, 王天宇, 曲永印, 等. 风电场的风力资源分析以及场址选择[J]. 太阳能学报, 2016, 37(11): 2835-2842.
LIU C, WANG T Y, QU Y Y, et al.Wind resource analysis and site selection of wind power plant[J]. Acta energiae solaris sinica, 2016, 37(11): 2835-2842.
[13] MAO Y, SHI C Y, LIU H Y. Day-ahead wind power forecasting based on the clustering of equivalent power curves[J]. Energy, 2020, 218: 119515.1-119515.10.
[14] DRAGOMIRETSKIY K, ZOSSO D.Variational mode decomposition[J]. IEEE transactions on signal processing, 2014, 62(3): 531-544.
[15] 向玲, 李京蓄, 王朋鹤, 等. 基于VMD-FIG和参数优化GRU的风速多步区间预测[J]. 太阳能学报, 2021, 42(10): 237-242.
XIANG L, LI J X, WANG P H, et al.Wind speed multistep interval forecasting based on VMD-FIG and parameter-optimized GRU[J]. Acta energiae solaris sinica, 2021, 42(10): 237-242.
[16] REHMAN N, AFTAB H.Multivariate variational mode decomposition[J]. IEEE transactions on signal processing, 2019, 67(23): 6039-6052.
[17] CHEN N, XUE Y S, DING J, et al.Ultra-short term wind speed prediction using spatial correlation[J]. Automation of electric power systems, 2017, 41(12): 124-130.
[18] 王红刚, 李彬. 基于融合长短时记忆网络的风电场超短期风速预测研究[J]. 可再生能源, 2020, 38(1): 41-46.
WANG H G, LI B.Very-short-term wind speed prediction of multiple wind farms based on merged long-short term memory networks[J]. Renewable energy resources, 2020, 38(1): 41-46.
[19] FAN C, SUN Y J, XIAO F, et al.Statistical investigations of transfer learning-based methodology for short-term building energy predictions[J]. Applied energy, 2020, 262: 219-231 .
[20] SAREMI S, MIRJALILI S, LEWIS A.Grasshopper optimisation algorithm: theory and application[J]. Advances in engineering software, 2017, 105: 30-47.
[21] MIRJALILI S Z, MIRJALILI S, SAREMI S, et al.Grasshopper optimization algorithm for multi-objective optimization problems[J]. Applied intelligence, 2017, 48: 805-820.

基金

河北省科技支撑计划(19210108D; 19214501D; 20314501D; F2021202022)

PDF(2304 KB)

Accesses

Citation

Detail

段落导航
相关文章

/