以某大型光热电站高温熔盐储罐为研究对象,采用瞬态热-机械应力分析结果,依据ASME规范对储罐进行棘轮和蠕变-疲劳失效评估。结果显示:正常和异常工况下储罐均未发生棘轮失效,因异常工况下储罐壁面存在165 ℃的温差,其结构的棘轮应变较正常工况增加72%。异常工况下储罐会发生蠕变-疲劳失效,结构的蠕变损伤和疲劳损伤较不会失效的正常工况分别增加1.4倍和9.0倍。为避免入罐熔盐温度大幅波动给结构安全带来危害,故建议采用熔盐缓冲罐降低温度波动范围。
Abstract
Taking a high temperature molten-salt storage tank of a large-scale solar thermal power tower station as the research object and according to results of transient thermal-mechanical stress analysis, ratchetting failure and creep-fatigue failure of the storage tank are evaluated based on ASME code. The results show that ratchetting failure of the storage tank will not occur under normal and abnormal conditions. Compared to ratchetting strain of structure under normal condition, the strain under abnormal condition increases by 72%, due to the temperature difference (165 ℃) on the wall of tank. Storage tank will occur creep-fatigue failure under abnormal condition and the value of creep damage and fatigue damage increase by 1.4 times and 9 times respectively compared with normal condition which does not fail. It is suggested that a molten-salt buffer tank is recommended to reduce the hazard to structure caused by temperature fluctuation of molten salt.
关键词
太阳能 /
热能储存 /
有限元法 /
蠕变-疲劳 /
棘轮
Key words
solar energy /
thermal energy storage /
finite element method /
creep-fatigue /
ratchetting
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] 王康. 光热发电“十四五”: 破局发展的关键期[J]. 能源, 2020(增刊1): 70-74.
WANG K.Photothermal "The 14th five-year plan": the critical period of development[J]. Energy, 2020(Sup1): 70-74.
[2] 佚名. 新月沙丘光热电站发生储罐漏盐事故暂时停运[EB/OL]. [2016-12-05].https://guangfu.bjx.com.cn/news/20161205/793936.shtml.
Anon. Solar thermal power station of crescent dunes was temporarily suspended due to leakage of storage tank[EB/OL].[2016-12-05]. https://guangfu.bjx.com.cn/news/201 61205/793936.shtml.
[3] FLUECKIGER S, YANG Z, GARIMELLA S V.An integrated thermal and mechanical investigation of molten-salt thermocline energy storage[J]. Applied energy, 2011, 88(6): 2098-2105.
[4] FLUECKIGER S M, YANG Z, GARIMELLA S V.Review of molten-salt thermocline tank modeling for solar thermal energy storage[J]. Heat transfer engineering, 2013, 34(10): 787-800.
[5] FLUECKIGER S M, YANG Z, GARIMELLA S V.Thermomechanical simulation of the solar one thermocline storage tank[J]. Journal of solar energy engineering, 2012, 134(4): 041014.
[6] 王昕. 大型熔盐储罐应力分析及预热和进盐瞬态模拟[D]. 北京: 北京化工大学, 2020.
WANG X.Stress analysis and transient simulation on heating and filling process of large molten-salt storage tank[D]. Beijing: Beijing University of Chemical Technology, 2020.
[7] ZENG X S, WANG X, LI H F, et al.Strength and creep-fatigue analysis of a molten-salt storage tank[C]//2019 International Conference on Artificial Intelligence and Advanced Manufacturing(AIAM), Dublin, Ireland, 2019: 742-746.
[8] 高肖肖. 熔盐储罐的结构设计与性能研究[D]. 西安: 西北大学, 2018.
GAO X X.Structure design and performance study of molten salt tank[D]. Xi'an: Northwest University, 2018.
[9] Section Ⅲ, division 1, subsection NH, class 1, components in elevated temperature services, ASME boiler and pressure vessel code[S].
[10] 王昕, 钱才富. 非锚固式大型立式熔盐储罐热疲劳分析[J]. 压力容器, 2018, 35(4): 31-35.
WANG X, QIAN C F.Thermal fatigue analysis of an unanchored large vertical melt salt storage tank[J]. Pressure vessel technology, 2018, 35(4): 31-35.
[11] Section Ⅱ, materials, part D, properties, ASME boiler and pressure vessel code[S].
[12] 曾鑫, 刘长军, 蔡君, 等. 高温熔盐储罐热缓冲装置及高温熔盐储罐: 202121267972.9[P].2021-11-26.
ZENG X, LIU C J, CAI J, et al. High temperature molten-salt storage tank thermal buffering device and high temperature molten-salt storage tank: 202121267972.9[P].2021-11-26.