冬季太阳能相变蓄热通风墙热工性能的数值模拟

陈佳慧, 康鑫

太阳能学报 ›› 2023, Vol. 44 ›› Issue (4) : 522-530.

PDF(2745 KB)
欢迎访问《太阳能学报》官方网站,今天是
PDF(2745 KB)
太阳能学报 ›› 2023, Vol. 44 ›› Issue (4) : 522-530. DOI: 10.19912/j.0254-0096.tynxb.2021-1545

冬季太阳能相变蓄热通风墙热工性能的数值模拟

  • 陈佳慧1, 康鑫1,2
作者信息 +

NUMERICAL SIMULATIONS ON THERMAL PERFORMANCES OF PASSIVE SOLAR VENTILATED WALLS WITH LATENT HEAT STORAGE IN WINTER

  • Chen Jiahui1, Kang Xin1,2
Author information +
文章历史 +

摘要

在建筑通风墙体中加入相变材料被认为是改善其冬季热工性能的有效方法。相变材料在墙体中可采用分块的方法进行宏观封装,此时材料在熔化过程中产生的自然对流现象十分显著,不能被忽略。该文使用开源计算流体力学框架OpenFOAM下开发的求解器针对被动式相变蓄热通风墙体的热工性能开展了数值研究,以准确模拟相关传热、流动、相变等物理过程。计算结果表明:相变材料蓄热墙能有效降低室内温度波动;相变材料内部的自然对流作用很大程度上影响着材料的熔化与凝固速度,因此材料封装时的长宽比以及分块方式应做出审慎选择。

Abstract

Adding phase change materials (PCMs) to building ventilation wall is considered to be an effective means to improve its thermal performance in winter. PCMs can be packaged macroscopically in the wall by the method of block. At this time, the phenomenon of natural convection generated in the melting process of materials is very significant and cannot be ignored. In this paper, thermal performances of passive solar ventilation walls with latent heat storage are studied, by using the numerical solver developed based on the open-source CFD framework OpenFOAM. Physical processes of heat transfer, flow dynamics, and phase change of materials are accurately predicted. The results show that the thermal storage wall of PCMs can effectively reduce the fluctuation of indoor temperature. In addition, natural convection in the PCMs greatly affects the melting and solidification rate of materials. Therefore, the length-to-width ratios of PCMs and its blocking-arrangements should be carefully selected.

关键词

相变材料 / 被动式太阳能建筑 / 数值模拟 / 通风墙 / 焓-多孔介质法

Key words

phase change materials / passive solar buildings / numerical simulation / ventilated wall / enthalpy porosity method

引用本文

导出引用
陈佳慧, 康鑫. 冬季太阳能相变蓄热通风墙热工性能的数值模拟[J]. 太阳能学报. 2023, 44(4): 522-530 https://doi.org/10.19912/j.0254-0096.tynxb.2021-1545
Chen Jiahui, Kang Xin. NUMERICAL SIMULATIONS ON THERMAL PERFORMANCES OF PASSIVE SOLAR VENTILATED WALLS WITH LATENT HEAT STORAGE IN WINTER[J]. Acta Energiae Solaris Sinica. 2023, 44(4): 522-530 https://doi.org/10.19912/j.0254-0096.tynxb.2021-1545
中图分类号: TU111.4   

参考文献

[1] PACHECO R, ORDÓÑEZ J, MARTÍNEZ G. Energy efficient design of building: a review[J]. Renewable and sustainable energy reviews, 2012, 16(6): 3559-3573.
[2] SADINENI S B, MADALA S, BOEHM R F.Passive building energy savings: a review of building envelope components[J]. Renewable and sustainable energy reviews, 2011, 15(8): 3617-3631.
[3] SEFERIS P, STRACHAN P, DIMOUDI A, et al.Investigation of the performance of a ventilated wall[J]. Energy and buildings, 2011, 43(9): 2167-2178.
[4] CIAMPI M, LECCESE F, TUONI G.Ventilated facades energy performance in summer cooling of buildings[J]. Solar energy, 2003, 75(6): 491-502.
[5] IBAÑEZ-PUY M, VIDAURRE-ARBIZU M, SACRISTÁN-FERNÁNDEZ J A, et al. Opaque Ventilated Façades: thermal and energy performance review[J]. Renewable and sustainable energy reviews, 2017, 79: 180-191.
[6] 张维维, 程建杰, 张源, 等. 双层相变材料砌块的全年应用效果研究[J]. 太阳能学报, 2019, 40(6): 1519-1526.
ZHANG W W, CHENG J J, ZHANG Y, et al.Research on year-round application effect of double layer phase change materials block[J]. Acta energiae solaris sinica, 2019, 40(6): 1519-1526.
[7] FARAJ K, KHALED M, FARAJ J, et al.A review on phase change materials for thermal energy storage in buildings: heating and hybrid applications[J]. Journal of energy storage, 2021, 33: 101913.
[8] 王鑫, 方建华, 刘坪, 等. 相变材料的研究进展[J]. 功能材料, 2019, 50(2): 2070-2075.
WANG X, FANG J H, LIU P, et al.Research progress of phase change materials[J]. Journal of functional materials, 2019, 50(2): 2070-2075.
[9] WANG H K E, LU W, WU Z G, et al. Parametric analysis of applying PCM wallboards for energy saving in high-rise lightweight buildings in Shanghai[J]. Renewable energy, 2020, 145: 52-64.
[10] KUSAMA Y, ISHIDOYA Y.Thermal effects of a novel phase change material (PCM) plaster under different insulation and heating scenarios[J]. Energy and buildings, 2017, 141: 226-237.
[11] DEVAUX P, FARID M M.Benefits of PCM underfloor heating with PCM wallboards for space heating in winter[J]. Applied energy, 2017, 191: 593-602.
[12] 徐礼颉, 罗成龙, 季杰, 等. 双流道-中间隔热型太阳能相变蓄热墙体系统实验研究[J]. 太阳能学报, 2017, 38(5): 1227-1232.
XU L J, LUO C L, JI J, et al.Experimental research of a building-integrated double-channel and middle-positioned-insulation solar PCM wall[J]. Acta energiae solaris sinica, 2017, 38(5): 1227-1232.
[13] LI W, CHEN W.Numerical analysis on the thermal performance of a novel PCM-encapsulated porous heat storage Trombe-wall system[J]. Solar energy, 2019, 188: 706-719.
[14] LI S S, ZHU N, HU P F, et al.Numerical study on thermal performance of PCM Trombe wall[J]. Energy procedia, 2019, 158: 2441-2447.
[15] ZHU N, LI S S, HU P F, et al.Numerical investigations on performance of phase change material Trombe wall in building[J]. Energy, 2019, 187: 116057.
[16] CHEN C, LING H S, ZHAI Z Q, et al.Thermal performance of an active-passive ventilation wall with phase change material in solar greenhouses[J]. Applied energy, 2018, 216: 602-612.
[17] 孙李媛, 谢运生, 罗成龙, 等. 相变蓄热型光伏集热墙体系统的冬季实验研究[J]. 太阳能学报, 2020, 41(9): 265-270.
SUN L Y, XIE Y S, LUO C L, et al.Experimental study on photovoltaic Trombe wall system combined with phase change materials in winter[J]. Acta energiae solaris sinica, 2020, 41(9): 265-270.
[18] MENG E L, YU H, ZHOU B.Study of the thermal behavior of the composite phase change material (PCM) room in summer and winter[J]. Applied thermal engineering, 2017, 126: 212-225.
[19] BRENT A D, VOLLER V R, REID K J.Enthalpy-porosity technique for modeling convection-diffusion phase change: application to the melting of a pure metal[J]. Numerical heat transfer, 1988, 13(3): 297-318.
[20] RÖSLER F, BRÜGGEMANN D. Shell-and-tube type latent heat thermal energy storage: numerical analysis and comparison with experiments[J]. Heat and mass transfer, 2011, 47(8): 1027-1033.
[21] SUN D, WANG L J.Research on heat transfer performance of passive solar collector-storage wall system with phase change materials[J]. Energy and buildings, 2016, 119: 183-188.
[22] ONG K S.A mathematical model of a solar chimney[J]. Renewable energy, 2003, 28(7): 1047-1060.
[23] GAU C, VISKANTA R.Melting and solidification of a pure metal on a vertical wall[J]. Journal of heat transfer, 1986, 108(1): 174-181.
[24] MORENO S, HINOJOSA J F, HERNÁNDEZ-LÓPEZ I, et al. Numerical and experimental study of heat transfer in a cubic cavity with a PCM in a vertical heated wall[J]. Applied thermal engineering, 2020, 178: 115647.

PDF(2745 KB)

Accesses

Citation

Detail

段落导航
相关文章

/