基于自然风非稳定性的特点,依据风力机各项参数拟合出阵风函数,对某S翼型水平轴风力机进行三维非稳态数值计算和试验,研究阵风入流和稳定入流下翼型凹变对尾迹辐射声频谱、声辐射传播和尾迹涡量耗散的影响。结果表明:翼型凹变可有效降低尾迹气动噪声,其基频及倍频声压级明显低于原始叶片;随着轴向距离增加,翼型凹变叶片降噪效果逐渐增大,在轴向500 mm处声压级最大降低3.6 dB,且阵风入流下翼型凹变降噪效果大于稳定入流。同时,翼型凹变叶片尾迹涡量明显降低,验证了翼型凹变降噪的有效性。
Abstract
Based on the instability of natural wind, a gust function was fitted according to the parameters of the wind turbines. Applying a combination of three-dimensional unsteady simulation and experimental verification on a horizontal axis wind turbines with S-shaped airfoil, the influence of airfoil concavity on the wake radiation acoustic spectrum, acoustic radiation propagation, and wake vorticity dissipation under both gust inflow and stable inflow were studied. The results show that the airfoil concavity can effectively reduce the aerodynamic noise of wake, and its fundamental frequency and high harmonic sound pressure level are significantly lower than those of the original blade. With the increase of axial distance, the noise reduction effect of airfoil concavity blade increases gradually, and the maximum sound pressure level is decreased by 3.6 dB at the axial direction of 500 mm. The noise reduction effect of airfoil concavity blade under the gust inflow is greater than that of the stable inflow. The wake vortex of airfoil concavity blade also has a significant decrease, which verifies the effectiveness of airfoil concavity on the aerodynamic noise reduction.
关键词
风力机 /
声压级 /
涡量 /
叶片 /
阵风入流 /
翼型凹变
Key words
wind turbines /
sound pressure level /
vorticity /
blades /
gust inflow /
airfoil concavity
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] KURELEK J W, KOTSONIS M, YARUSEVYCH S.Transition in a separation bubble under tonal and broadband acoustic excitation[J]. Journal of fluid mechanics, 2018, 853: 1-36.
[2] 李典, 刘小民. 几种仿生翼型气动性能及噪声特性研究[J]. 工程热物理学报, 2015, 36(12): 2629-2632.
LI D, LIU X M.Numerical study on aerodynamic performance and noise characteristics of several bionic airfoils[J]. Journal of engineering thermophysics, 2015, 36(12): 2629-2632.
[3] TONG F, QIAO W Y, JI L, et al. Experimental study on the turbomachinery trailing edge noise reduction[C]//Turbo Expo: Power for Land, Sea,Air, American Society of Mechanical Engineers, 2016, 49699: V02AT41A002.
[4] 郝文星, 李春, 丁勤卫, 等. 自适应襟翼流动分离控制数值研究[J]. 中国电机工程学报, 2019, 39(2): 536-542, 650.
HAO W X,LI C,DING Q W,et al.Numerical study on flow separation control of adaptive flap[J]. Proceedings of the CSEE, 2019, 39(2): 536-542, 650.
[5] JELINEK T.Experimental investigation of the boundary layer transition on a laminar airfoil using infrared thermography[C]//European Physical Journal Web of Conferences, EDP Sciences, 2018, 180: 02040.
[6] SEDIGHI H, AKBARZADEH P, SALAVATIPOUR A.Aerodynamic performance enhancement of horizontal axis wind turbines by dimples on blades: numerical investigation[J]. Energy, 2020, 195: 117056.
[7] CHAITANYA P, JOSEPH P, NARAYANAN S, et al.Aerofoil broadband noise reductions through double-wavelength leading-edge serrations: a new control concept[J]. Journal of fluid mechanics, 2018, 855: 131-151.
[8] 陈二云, 邬长乐, 杨爱玲, 等. 正弦波形前缘叶片气动噪声特性的数值研究[J]. 流体机械, 2021, 49(7): 20-28.
CHEN E Y, WU C L, YANG A L, et al.Numerical study on aerodynamic noise characteristics of sinusoidal waveform leading edge blades[J]. Fluid machinery, 2021, 49(7): 20-28.
[9] 代元军, 任常在, 徐立军, 等. V型叶尖结构对风力机叶尖区域气动噪声影响的实验研究[J]. 太阳能学报, 2017, 38(2): 472-477.
DAI Y J, REN C Z, XU L J, et al.Experimental study of effect V-type blade tip structure on aerodynamic noise at tip region of wind turbine[J]. Acta energiae solaris sinsica,2017, 38(2): 472-477.
[10] 汪泉, 洪星, 杨建忠, 等. 低噪声风力机叶片气动外形优化设计[J]. 中国机械工程, 2018, 29(13): 1574-1579, 1587.
WANG Q, HONG X, YANG J Z, et al.Aerodynamic shape optimization design of low noise wind turbine blade[J]. China mechanical engineering, 2018, 29(13): 1574-1579, 1587.
[11] MA J L, DUAN Y F, ZHAO M, et al. Effect of airfoil concavity on wind turbine blade performances[J]. Shock and vibration, 2019, 2019: 6405153.1-6405153.11.
[12] LOCKARD D.Comparison of Ffowcs Williams-Hawkings solvers for airframe noise applications[C]//8th AIAA/CEAS Aeroacoustics Conference & Exhibit, Breckenridge, Colorado, USA, 2002: 2580.
基金
国家自然科学基金(51966014); 内蒙古自然科学基金(2019MS05021); 内蒙古自治区科技计划(2021GG0436); 内蒙古自治区高等学校科学研究项目(NJZZ21067)