矿堆区菊芋块茎乙醇转化性能及重金属归趋

樊战辉, 曾丽娟, 戚明辉, 肖文雄, 沈飞

太阳能学报 ›› 2023, Vol. 44 ›› Issue (4) : 247-252.

PDF(1367 KB)
欢迎访问《太阳能学报》官方网站,今天是
PDF(1367 KB)
太阳能学报 ›› 2023, Vol. 44 ›› Issue (4) : 247-252. DOI: 10.19912/j.0254-0096.tynxb.2021-1554

矿堆区菊芋块茎乙醇转化性能及重金属归趋

  • 樊战辉1,2, 曾丽娟3, 戚明辉3, 肖文雄4, 沈飞1
作者信息 +

ETHANOL CONVERSION PERFORMANCE AND HEAVY METAL TREND OF Jerusalem artichoke TUBER IN MINE HEAP AREA

  • Fan Zhanhui1,2, Zeng Lijuan3, Qi Minghui3, Xiao Wenxiong4, Shen Fei1
Author information +
文章历史 +

摘要

以重金属污染土壤种植的菊芋块茎为原料经过磷酸水解后发酵产生乙醇,对水解条件、转化性能及重金属在乙醇生产各环节的归趋进行研究。结果显示:水解磷酸浓度4%、温度90 ℃、时间180 min,固液比1:6时,还原糖产率高达92.40%。水解糖液发酵48 h后乙醇产量达53.04 g/L,转化率高达理论转化率的94.00%。乙醇生产中,40%~90%的重金属物质进入废渣废液系统,进入乙醇的部分小于2%,表明重金属污染土壤种植菊芋对后续乙醇转化无影响,在实际生产中应加强废渣的重金属管控。

Abstract

In this work, Jerusalem artichoke tubers harvested from the heavy metal polluted soil were employed to produce ethanol via phosphoric acid hydrolysis and fermentation. The hydrolysis conditions, ethanol fermentation performance and the distribution of heavy metals in each stream of ethanol production were investigated. Results indicated that the suitable conditions for yielding the reducing sugar from tuber is phosphoric acid concentration of 4%, temperature of 90 ℃, hydrolysis duration of 180 min, and solid-liquid ratio of 1:6, by which the reducing sugar yield reachs 92.40%. The subsequent ethanol yield reachs 53.04 g/L within 48 h with the conversion rate of 94.00%. In the whole process of ethanol production, 40%-90% of heavy metals enter the waste residue and waste liquid system, and less than 2% enter the ethanol part, thus, it should be paid more attentions on the fermented mash, especially on the solid part of the fermented residues.

关键词

生物乙醇 / 水解 / 发酵 / 重金属 / 菊芋块茎

Key words

bioethanol / hydrolysis / fermentation / heavy metal / Jerusalem artichoke tuber

引用本文

导出引用
樊战辉, 曾丽娟, 戚明辉, 肖文雄, 沈飞. 矿堆区菊芋块茎乙醇转化性能及重金属归趋[J]. 太阳能学报. 2023, 44(4): 247-252 https://doi.org/10.19912/j.0254-0096.tynxb.2021-1554
Fan Zhanhui, Zeng Lijuan, Qi Minghui, Xiao Wenxiong, Shen Fei. ETHANOL CONVERSION PERFORMANCE AND HEAVY METAL TREND OF Jerusalem artichoke TUBER IN MINE HEAP AREA[J]. Acta Energiae Solaris Sinica. 2023, 44(4): 247-252 https://doi.org/10.19912/j.0254-0096.tynxb.2021-1554
中图分类号: S216    X53   

参考文献

[1] 王海波. “一带一路”背景下我国生物质能源发展的机遇与挑战[J]. 林业调查规划, 2017, 42(2): 136-138.
WANG H B.Opportunities and challenges for the biomass energy development in China under the background of “one way one road”[J]. Forest inventory and planning, 2017, 42(2): 136-138.
[2] 耿盼瑶, 秦绪明, 刘一帆. 生物修复技术在矿山重金属污染修复中的应用与展望[J]. 中国资源综合利用, 2021, 39(12): 102-105.
GENG P Y, QIN X M, LIU Y F.Application and prospect of bioremediation technology in remediation of heavy metal pollution in mines[J]. China resources comprehensive utilization, 2021, 39(12): 102-105.
[3] 杨倩倩. 能源植物同时去除土壤中汞和多环芳烃的研究[D]. 北京: 北京化工大学, 2020.
YANG Q Q.Study on simultaneous removal of mercury and polycyclic aromatic hydrocarbons from soil by energy plants[D]. Beijing: Beijing University of Chemical Technology, 2020.
[4] BOURNONVILLE B, NZIHOU A, SHARROCK P, et al.Stabilisation of heavy metal containing dusts by reaction with phosphoric acid: study of the reactivity of fly ash[J]. Journal of hazardous materials, 2004, 116(1-2): 65-74.
[5] 李杰. 菊芋乙醇发酵工艺的初步研究[D]. 南京: 南京农业大学, 2009.
LI J.Preliminary study of ethanol fermentation process from Jerusalem artichoke[D]. Nanjing: Nanjing Agricultural University, 2009.
[6] 代勇华, 刘盼婷, 宋超, 等. 酿酒酵母在糖质燃料乙醇中的发酵工艺优化[J]. 应用与环境生物学报, 2022, 28(4): 1076-1083.
DAI Y H, LIU P T, SONG C, et al.Optimization of fermentation process for saccharide fuel-ethanol production by Saccharomyces cerevisiae[J]. Chinese journal of applied and environmental biology, 2022, 28(4): 1076-1083.
[7] 薛永萍, 汤璐, 贾金诚. 酸水解稻草制还原糖的工艺条件研究[J]. 吉林农业, 2010(10): 42.
XUE Y P, TANG L, JIA J C.Study on technological conditions of reducing sugar from acid hydrolysis of rice straw[J]. Jilin agricultural, 2010(10): 42.
[8] 李玲玉, 孙晓晶, 郭富金, 等. 菊芋的化学成分、生物活性及其利用研究进展[J]. 食品研究与开发, 2019, 40(16): 213-218.
LI L Y, SUN X J, GUO F J, et al.Study on the chemical and bioactive compounds and applications of Helianthus tuberosus L[J]. Food research and development, 2019, 40(16): 213-218.
[9] 张军伟. 木质纤维素酸水解研究[D]. 无锡: 江南大学, 2008.
ZHANG J W.Study on acid-hydrolysis of lignocelluloses[D]. Wuxi: Jiangnan University, 2008.
[10] SAENGKANUK A, NUCHADOMRONG S, JOGLOY S, et al.A simplified spectrophotometric method for the determination of inulin in Jerusalem artichoke (Helianthus tuberosus L.) tubers[J]. European food research & technology, 2011, 233(4): 609-616.
[11] KIM K, HAMDY M K.Acid hydrolysis of Jerusalem artichoke for ethanol fermentation[J]. Biotechnology & bioengineering, 1986, 28(1): 138-141.
[12] 李杰, 辛本荣, 隆小华, 等. 菊芋块茎的低温糊化及酸解条件的优化[J]. 食品工业科技, 2010(3): 239-242.
LI J, XIN B R, LONG X H, et al.Study on gelatinization at low temperature and optimization of acidolysis condition of Helianthus tuberosus[J]. Science and technology of food industry, 2010(3): 239-242.
[13] 姚秀清, 王娜娜. 稀酸水解菊芋制乙醇技术研究[J]. 应用化工, 2011, 40(3): 502-504.
YAO X Q, WANG N N.Research of ethanol production from Jerusalem artichoke by dilute acid hydrolyzation[J]. Applied chemical industry, 2011, 40(3): 502-504.
[14] SARCHAMI T, REHMANN L, SLATER S C, et al.Optimizing acid hydrolysis of Jerusalem artichoke-derived inulin for fermentative butanol production[J]. Bioenergy research, 2015, 8(3): 1148-1157.
[15] XIE J, WENG Q, YE G Y, et al.Bioethanol production from sugarcane grown in heavy metal-contaminated soils[J]. Bioresources, 2014, 9(2): 2509-2520.
[16] 邓攀. 菊芋汁水解液发酵生产丁醇[D]. 大连: 大连理工大学, 2011.
DENG P.Butanol production from hydrolysate of Jerusalem artichoke juice[J]. Dalian: Dalian University of Technology, 2011.
[17] ZOU S M, WANG Y Z, HE M L, et al.Scale-up batch fermentation of bioethanol production from the dry powder of Jerusalem artichoke(Helianthus tuberosus L. )tubers by recombinant Saccharomyces cerevisiae[J]. Journal of the institute of brewing, 2016, 122(2): 261-267.
[18] RAZMOVSKI R, VUCUROVIC V, MILJIC U, et al.Effect of temperature on acid hydrolysis of Jerusalem artichoke as raw material for ethanol production[J]. Acta periodica technologica, 2013(44): 279-287.
[19] 于洪久, 郭炜, 李玉梅, 等. 菊芋发酵提取生物乙醇研究[J]. 黑龙江农业科学, 2013(2): 102-103.
YU H J, GUO W, LI Y M, et al.Study on producing ethanol from Jerusalem artichoke flour by fermentation[J]. Heilongjiang agricultural sciences, 2013(2): 102-103.
[20] 聂永丰, 郑鹏, 刘建国, 等. 磷酸洗涤对垃圾焚烧飞灰热稳定性和重金属固定的影响[J]. 清华大学学报(自然科学版), 2007, 47(6): 838-841.
NIE Y F, ZHENG P, LIU J G, et al.Effects of phosphoric acid washing on thermal stability and chemical stability of heavy metals of MSWI fly ash[J]. Journal of Tsinghua University(natural science edition), 2007, 47(6): 838-841.
[21] 曹喜焕, 茅伟刚, 陈霞, 等. 木薯干中铅砷汞金属离子在发酵酒精生产过程中的迁移规律研究[J]. 食品与发酵科技, 2010, 46(5): 77-79.
CAO X H, MAO W G, CHEN X, et al.Research on migration rule of lead,arsenic and mercury in cassavas during the process of alcohol fermentation[J]. Food and fermentation technology, 2010, 46(5): 77-79.
[22] VINTILA T, NEGREA A, BARBU H, et al.Metal distribution in the process of lignocellulosic ethanol production from heavy metal contaminated sorghum biomass[J]. Journal of chemical technology & biotechnology, 2016, 91(6): 1607-1614.

基金

成都市重点研发支撑计划(2020-YF09-00039-SN)

PDF(1367 KB)

Accesses

Citation

Detail

段落导航
相关文章

/