基于滑模控制的直驱风电场次同步振荡抑制策略

王刚, 高本锋, 王晓, 张利伟, 丁雨晴

太阳能学报 ›› 2023, Vol. 44 ›› Issue (4) : 163-172.

PDF(2486 KB)
欢迎访问《太阳能学报》官方网站,今天是
PDF(2486 KB)
太阳能学报 ›› 2023, Vol. 44 ›› Issue (4) : 163-172. DOI: 10.19912/j.0254-0096.tynxb.2021-1557

基于滑模控制的直驱风电场次同步振荡抑制策略

  • 王刚1,2, 高本锋1,2, 王晓1,2, 张利伟1, 丁雨晴1,2
作者信息 +

SUB-SYNCHRONOUS OSCILLATION SUPPRESSION STRATEGY FOR DIRECT DRIVE WIND FARM BASED ON SLIDING MODE CONTROL

  • Wang Gang1,2, Gao Benfeng1,2, Wang Xiao1,2, Zhang Liwei1, Ding Yuqing1,2
Author information +
文章历史 +

摘要

当直驱风电场(DDWF)并入弱交流系统中发生次同步振荡(SSO)时,网侧变流器(GSC)电流内环的PI控制器会放大DDWF并网电流中所含的次同步电流分量,进而形成由交流系统、GSC及其控制系统构成的次同步电流助增正反馈回路,最终导致系统SSO失稳。针对这一问题,该文提出一种基于GSC电流内环滑模控制(SMC)的直驱风电场SSO抑制策略。首先,建立DDWF并入弱交流系统的动态模型,推导由PI控制器主导的DDWF并入弱交流系统SSO的形成机理。然后,为了切断系统的次同步电流助增正反馈回路,设计基于指数趋近律的SMC控制器,并以SMC控制器替换原GSC电流内环中的PI控制器,通过理论推导证明GSC电流内环SMC控制器能有效抑制系统SSO。最后,在PSCAD/EMTDC中,以DDWF并入弱交流系统作为算例,验证所提SSO抑制策略的有效性。

Abstract

When the direct drive wind farm(DDWF) incorporates into weak AC system, the sub-synchronous oscillation(SSO) may occur. At this time, the PI controller in the inner current loop of the grid side converter(GSC) may amplify the sub-synchronous current component contained in the gird-connected current of DDWF. Then, a sub-synchronous current positive feedback loop composed of AC system,GSC and its control system is formed to leads to the instability of the system eventually. To solve this issue, the SSO suppression strategy of DDWF based on the sliding mode control(SMC) in the inner current loop of GSC is proposed. Firstly, the dynamic model of DDWF connected to weak AC system is established,and the SSO formation mechanism of DDWF connected to weak AC system dominated by PI controller is deduced. In order to cut off the positive feedback loop of the system sub-synchronous current, the SMC controller based on exponential reaching law is designed,and the SMC controller is used to replace the PI controller in the original inner current loop of GSC. Through the theoretical derivation,it is proved that the SMC controller in inner current loop of GSC can effectively suppress the SSO of the system. Finally, the simulation examples of DDWF connected to weak AC system in PSCAD/EMTDC verify the effectiveness of the proposed SSO suppression strategy.

关键词

滑模控制 / 次同步振荡 / 直驱风电场 / 网侧变流器 / 电流内环

Key words

sliding mode control(SMC) / sub-synchronous oscillation(SSO) / direct drive wind farm(DDWF) / grid side converter(GSC) / inner current loop

引用本文

导出引用
王刚, 高本锋, 王晓, 张利伟, 丁雨晴. 基于滑模控制的直驱风电场次同步振荡抑制策略[J]. 太阳能学报. 2023, 44(4): 163-172 https://doi.org/10.19912/j.0254-0096.tynxb.2021-1557
Wang Gang, Gao Benfeng, Wang Xiao, Zhang Liwei, Ding Yuqing. SUB-SYNCHRONOUS OSCILLATION SUPPRESSION STRATEGY FOR DIRECT DRIVE WIND FARM BASED ON SLIDING MODE CONTROL[J]. Acta Energiae Solaris Sinica. 2023, 44(4): 163-172 https://doi.org/10.19912/j.0254-0096.tynxb.2021-1557
中图分类号: TM743   

参考文献

[1] 马静, 沈雅琦, 杜延菱, 等. 适应宽频振荡的风电并网系统主动阻尼技术综述[J]. 电网技术, 2021, 45(5): 1673-1686.MA J, SHEN Y Q, DU Y L, et al. Overview on active damping technology of wind power integrated system adapting to broadband oscillation[J]. Power system technology, 2021, 45(5): 1673-1686.
[2] 郝晓弘, 胡开伟, 裴婷婷, 等. 风电接入交直流混联电网外送消纳能力研究[J]. 太阳能学报, 2021, 42(10): 195-201.HE X H, HU K W, PEI T T, et al. Study on transmit capacity of wind power connected to AC/DC hybrid transmission grid[J]. Acta energiae solaris sinica, 2021, 42(10): 195-201.
[3] 王利超, 于永军, 张明远, 等.直驱风电机组阻抗建模及次同步振荡影响因素分析[J]. 电力工程技术, 2020, 39(1): 170-177.WANG L C, YU Y J, ZHANG M Y, et al. Impedance model and analysis of subsynchronous oscillation influence factors for grid-connected full-converter wind turbines[J]. Electric power engineering technology, 2020, 39(1): 170-177.
[4] TUMMALA A S.A robust composite wide area control of a DFIG wind energy system for damping inter-area oscillations[J]. Protection and control of modern power systems, 2020, 5: 1-10.
[5] CHI Y N, TANG B J, HU J B, et al.Overview of mechanism and mitigation measures on multi-frequency oscillation caused by large-scale integration of wind power[J]. CSEE journal of power and energy systems, 2019, 5(4): 433-443.
[6] 任必兴, 杜文娟, 王海风, 等. 锁相环控制对永磁直驱风机并网次同步振荡稳定性的影响——控制参数安全域[J]. 电力自动化设备, 2020, 40(9): 142-149.REN B X, DU W J, WANG H F, et al. Influence of PLL control on sub-synchronous oscillation stability of grid-connected PMSG: control parameter safety region[J]. Electric power automation equipment, 2020, 40(9): 142-149.
[7] LIU H K, XIE X R, HE J B, et al.Subsynchronous interaction between direct-drive PMSG based wind farms and weak AC networks[J]. IEEE transactions on power systems, 2017, 32(6): 4708-4720.
[8] 李景一, 毕天姝, 于钊, 等. 直驱风机变流控制系统对次同步频率分量的响应机理研究[J]. 电网技术, 2017, 41(6): 1734-1740.LI J Y, BI T S, YU Z, et al. Study on response characteristics of grid converter control system of permanent magnet synchronous generators (PMSG) to subsynchronous frequency component[J]. Power system technology, 2017, 41(6): 1734-1740.
[9] 徐衍会, 曹宇平. 直驱风机网侧换流器引发次/超同步振荡机理研究[J]. 电网技术, 2018, 42(5): 1556-1564.XU Y H, CAO Y P. Research on mechanism of sub/sup-Synchronous oscillation caused by GSC controller of direct-drive permanent magnetic synchronous generator[J]. Power system technology, 2018, 42(5): 1556-1564.
[10] 宋瑞华, 郭剑波, 李柏青, 等. 基于输入导纳的直驱风电次同步振荡机理与特性分析[J]. 中国电机工程学报, 2017, 37(16): 4662-4670, 4891.SONG R H, GUO J B, LI B Q, et al. Mechanism and characteristics of subsynchronous oscillation in direct-drive wind power generation system based on input-admittance analysis[J]. Proceedings of the CSEE, 2017, 37(16): 4662-4670, 4891.
[11] 高本锋, 易友川, 邵冰冰, 等. 基于自抗扰控制的直驱风电场次同步振荡抑制策略[J]. 电力自动化设备, 2020, 40(9): 148-157.GAO B F, YI Y C, SHAO B B, et al. Subsynchronous oscillation mitigation strategy based on ADRC for D-PMSGs based wind farm[J]. Electric power automation equipment, 2020, 40(9): 148-157.
[12] 周佩朋, 宋瑞华, 李光范, 等. 基于附加比例谐振控制的风机次同步振荡抑制方法[J]. 中国电机工程学报, 2021, 41(11): 3797-3807.ZHOU P P, SONG R H, LI G F, et al. Subsynchronous oscillation mitigation method for wind turbines based on additional proportional resonance control[J]. Proceedings of the CSEE, 2021, 41(11): 3797-3807.
[13] 陈新, 张旸, 王赟程. 基于阻抗分析法研究光伏并网逆变器与电网的动态交互影响[J]. 中国电机工程学报, 2014, 34(27): 4559-4567.CHEN X, ZHANG Y, WANG Y C. A study of dynamic interaction between PV grid-connected inverters and grid based on the impedance analysis method[J]. Proceedings of the CSEE, 2014, 34(27): 4559-4567.
[14] 秦超, 曾沅, 苏寅生, 等. 基于安全域的大规模风电并网系统低频振荡稳定分析[J]. 电力自动化设备, 2017, 37(5): 100-106.QIN C, ZENG Y, SU Y S, et al. Low-frequency oscillatory stability analysis based on security region for power system with large-scale wind power[J]. Electric power automation equipment, 2017, 37(5): 100-106.
[15] 吴汪平, 楚皓翔, 解大, 等. PI控制器参数对并网永磁直驱型风力发电系统机网相互作用的影响[J]. 电力自动化设备, 2017, 37(10): 21-28.WU W P, CHU H X, XIE D, et al. Influence of PI controllers' parameters on machine-network interaction ofgrid-connected PMSG system[J]. Electric power automation equipment, 2017, 37(10): 21-28.
[16] SEBAALY F, VAHEDI H, KANAAN H Y, et al.Sliding mode fixed frequency current controller design for grid-connected NPC inverter[J]. IEEE journal of emerging & selected topics in power electronics, 2016, 4(4): 1397-1405.
[17] SEBAALY F, VAHEDI H, KANAAN H, et al.Design and implementation of space vector modulation based sliding mode control for grid-connected 3L-NPC inverter[J]. IEEE transactions on industrial electronics, 2016, 63(12): 7854-7863.
[18] 邵文权, 王猛, 吴朝俊, 等. 基于改进滑模控制的光伏系统MPPT控制策略[J]. 太阳能学报, 2021, 42(10): 87-93.SHAO W Q, WANG M, WU C J, et al. MPPT control strategy based on improved sliding mode control for photovoltaic power system[J]. Acta energiae solaris sinica, 2021, 42(10): 87-93.
[19] 鲁裕婷, 都洪基, 朱鑫要. 经VSC-HVDC系统并网的风电场反馈线性化滑模控制[J]. 电力工程技术, 2019, 38(5): 91-97.LU Y T, DU H J, ZHU X Y. Feedback linearization sliding mode control of wind farm connected with VSC-HVDC system[J]. Electric power engineering technology, 2019, 38(5): 91-97.
[20] 李鹏瀚, 王杰, 吴飞. 双馈风电机组次同步控制相互作用的反馈线性化滑模变结构抑制[J]. 电工技术学报, 2019, 34(17): 3661-3671.LI P H, WANG J, WU F. Sub-synchronous control interaction mitigation for DFIGs by sliding mode control strategy based on feedback linearization[J]. Transactions of China Electrotechnical Society, 2019, 34(17): 3661-3671.
[21] 方云熠, 曾喆昭, 王可煜, 等.永磁直驱风力发电系统最大功率跟踪改进型积分滑模控制[J]. 电力系统保护与控制, 2019, 47(13): 77-83.FANG Y Y, ZENG Z Z, WANG K Y, et al. MPPT control with improved integral SMC for D-PMSG wind power generation system[J]. Power system protection and control, 2019, 47(13): 77-83.
[22] 高本锋, 王刚, 邵冰冰, 等. 基于主导度分析的直驱风电场奇异摄动降阶方法[J]. 中国电机工程学报, 2022, 42(7): 2449-2462.GAO B F, WANG G, SHAO B B, et al. The singular perturbation approximation method based on the dominant degree analysis for direct drive wind farm[J]. Proceedings of the CSEE, 2022, 42(7): 2449-2462.
[23] 贺益康, 胡家兵, 徐烈. 并网双馈异步风力发电机运行控制运行控制[M]. 北京:中国电力出版社, 2011.
HE Y K, HU J B, XU L.Operation control of grid-connected doubly fed asynchronous wind turbine generator [M]. Beijing: China Electric Power Press, 2011.
[24] GAO W, WANG Y, HOMAIFA A.Discrete-time variable structure control systems[J]. IEEE transactions on industrial electronics, 2002, 42(2): 117-122.
[25] 高本锋, 王飞跃, 于弘洋, 等. 应用静止同步串联补偿器抑制风电次同步振荡的方法[J]. 电工技术学报, 2020, 35(6): 1346-1356.GAO B F, WANG F Y, YU H Y, et al. The suppression method of wind power sub-synchronous oscillation using static synchronous series compensator[J]. Transactions of China Electrotechnical Society, 2020, 35(6): 1346-1356.
[26] 曹建春, 项祖涛, 燕翚, 等. 抑制双馈风电场次同步谐振的STATCOM研究[J]. 电网技术, 2019, 43(3): 902-909.CAO J C, XIANG Z T, YAN H, et al. Research on mitigating DFIG wind farm SSR with STATCOM[J]. Power system technology, 2019, 43(3): 902-909.

基金

现代电力系统仿真控制与绿色电能新技术教育部重点实验室开放课题(MPSS2021-06)

PDF(2486 KB)

Accesses

Citation

Detail

段落导航
相关文章

/