改性正十八烷相变纳米胶囊制备表征及在太阳能建筑中的应用

张馨文, 翟鑫钰, 董辈辈, 王荆航, 彭浩

太阳能学报 ›› 2023, Vol. 44 ›› Issue (4) : 290-298.

PDF(3254 KB)
欢迎访问《太阳能学报》官方网站,今天是
PDF(3254 KB)
太阳能学报 ›› 2023, Vol. 44 ›› Issue (4) : 290-298. DOI: 10.19912/j.0254-0096.tynxb.2021-1561

改性正十八烷相变纳米胶囊制备表征及在太阳能建筑中的应用

  • 张馨文, 翟鑫钰, 董辈辈, 王荆航, 彭浩
作者信息 +

PREPARATION AND CHARACTERIZATION OF MODIFIED SiO2/N-OCTADECANE PHASE CHANGE NANOCAPUSULES ANDTHEIR APPLICATION IN SOLAR BUILDING

  • Zhang Xinwen, Zhai Xinyu, Dong Beibei, Wang Jinghang, Peng Hao
Author information +
文章历史 +

摘要

将相变纳米胶囊与传统建筑围护结构材料进行结合,通过非机械化储能方式提高传统被动式太阳能建筑的集热和控温性能,从而实现室内节能。通过微乳液聚合法制备分别含有3种成核剂(纳米Al2O3/C28/C14H30O)改性的C18/SiO2相变纳米胶囊,并采用浇铸法制备含有最佳相变纳米胶囊的石膏板。通过傅里叶变换红外光谱、X射线衍射和扫描电子显微镜测定相变纳米胶囊的化学结构和外貌,差示扫描量热法、热量分析及激光导热仪探究其储热性能,并对相变纳米胶囊石膏板进行一系列综合热性能测试。结果表明:相变纳米胶囊呈球状,粒径范围为100~300 nm。与不含成核剂的相变纳米胶囊相比,含15% C14H30O成核剂的过冷度降低49.00%,导热系数提高13.76%,并具有优异的热耐久性和可靠性。因此,将15% C14H30O改性的相变纳米胶囊应用于石膏板,通过引入温差评价发现,添加10%相变纳米胶囊的石膏板更有利于充分吸收外界热量,减小温度波动,从而实现被动式太阳能建筑室内节能。

Abstract

Phase change nanocapusules are combine with traditional building envelope materials, which can improve the heat collection and temperature control performance of traditional passive solar buildings through non-mechanized energy storage, thereby realizing indoor energy conservation. Organic modified SiO2@C18 nanocapusules with different nucleators (Nano-Al2O3/C28/C14H30O) were synthesized effectively via the microemulsion polymerization method and the gypsum boards containing phase change nanocapusules were prepared by casting method. The chemical structure and appearance of nanocapusules were determined by FT-IR, XRD, and SEM. The thermal properties were investigated by DSC, TGA and LFA. Principal thermal performances of gypsum boards containing the optimal NEPCMs were measured systematically. The results demonstrates that the phase change nanocapusules are spherical in size range of 100~300 nm. Compared with the NEPCMs without nucleating agents, the NEPCMs containing 15% C14H30O has a superior performance with the supercooling degree reduced by 49.00% and thermal conductivity increases by 13.76%. Meanwhile, its exhibites outstanding thermal durability and reliability. Therefore, contents of 15%C14H30O NEPCMs is added to the gypsum board. Through the temperature difference evaluation, it is founded that gypsum board with 10% NEPCMs is more conducive to absorbing external heat fully, reducing indoor temperature fluctuation and achieving a superb energy-saving effect in passive solar building.

关键词

纳米胶囊 / 过冷 / 导热系数 / 成核剂 / 相变纳米胶囊石膏板 / 被动式太阳能建筑节能

Key words

nanocapusule / supercooling / thermal conductivity / nucleating agents / phase change nanocapusule gypsum board / passive solar building energy saving

引用本文

导出引用
张馨文, 翟鑫钰, 董辈辈, 王荆航, 彭浩. 改性正十八烷相变纳米胶囊制备表征及在太阳能建筑中的应用[J]. 太阳能学报. 2023, 44(4): 290-298 https://doi.org/10.19912/j.0254-0096.tynxb.2021-1561
Zhang Xinwen, Zhai Xinyu, Dong Beibei, Wang Jinghang, Peng Hao. PREPARATION AND CHARACTERIZATION OF MODIFIED SiO2/N-OCTADECANE PHASE CHANGE NANOCAPUSULES ANDTHEIR APPLICATION IN SOLAR BUILDING[J]. Acta Energiae Solaris Sinica. 2023, 44(4): 290-298 https://doi.org/10.19912/j.0254-0096.tynxb.2021-1561
中图分类号: TU522.1   

参考文献

[1] GHOLAMIBOZANJANI G, FARID M.A comparison between passive and active PCM systems applied to buildings[J]. Renewable energy, 2020, 162: 112-123.
[2] 孙丹. 新型被动式太阳能相变集热蓄热墙系统研究[D].大连: 大连理工大学, 2016.
SUN D.Research on a new passive solar collector-storage wall system with phase change materials[D]. Dalian: Dalian University of Technology, 2016.
[3] 张毅, 冯春花, 刘洋, 等. 相变储能石膏板传热过程测试及有限元分析[J]. 太阳能学报, 2015, 36(8): 2016-2020.
ZHANG Y, FENG C H, LIU Y, et al.Heat transfer process test and finite element simulation analysis of phase change thermal storage gypsum board[J]. Acta energiae solaris sinica, 2015, 36(8): 2016-2020.
[4] 霍宇涛, 陈之琳, 饶中浩. 方腔内相变材料固液相变传热研究[J]. 工程热物理学报, 2020, 41(3): 615-620.
HUO Y T, CHEN Z L, RAO Z H.Investigation of heat transfer for solid-liquid phase change in a square cavity[J]. Journal of engineering thermophysics, 2020, 41(3): 615-620.
[5] 杜文清, 费华, 顾庆军, 等. 癸酸-石蜡二元低共熔复合相变材料的制备及性能研究[J]. 太阳能学报, 2021, 42(7): 251-256.
DU W Q, FEI H, GU Q J, et al.Preparation and properties of capric acid-paraffin binary low eutectic composite phase change materials[J]. Acta energiae solaris sinica, 2021, 42(7): 251-256
[6] 谢静超, 汤逸羚, 张召锋, 等. 通风与相变耦合条件下围护结构最佳蓄热性能[J]. 化工学报, 2017, 68(7): 2684-2695.
XIE J C, TANG Y L, ZHANG Z F, et al.Optimum heat storage performance of building envelope under coupling condition of ventilation and phase change[J]. Journal of chemical industry and engineering, 2017, 68(7): 2684-2695.
[7] ZAHIR M H, MOHAMED S A, SAIDUR R, et al.Supercooling of phase-change materials and the techniques used to mitigate the phenomenon[J]. Applied energy, 2019, 240: 793-817.
[8] LIANG S E, ZHU Y L, WANG H, et al.Preparation and characterization of thermoregulated rigid polyurethane foams containing nanoencapsulated phase change materials[J]. Industrial & engineering chemistry research, 2016, 55(10): 2721-2730.
[9] CHENG J J, ZHOU Y, MA D, et al.Preparation and characterization of carbon nanotube microcapsule phase change materials for improving thermal comfort level of buildings[J]. Construction and building materials, 2020, 244: 118388.
[10] WANG T Y, WANG S F, LUO R L, et al.Microencapsulation of phase change materials with binary cores and calcium carbonate shell for thermal energy storage[J]. Applied energy, 2016, 171: 113-119.
[11] METHAAPANON R, KORNBONGKOTMAS S, ATABOONWONGSE C, et al.Microencapsulation of n-octadecane and methyl palmitate phase change materials in silica by spray drying process[J]. Powder technology, 2020, 361: 910-916.
[12] 王大程, 谭淑娟, 徐国跃, 等. 硬脂酸/碳纳米管/聚甲基丙烯酸甲酯复合相变胶囊的制备与热性能研究[J]. 太阳能学报, 2019, 40(1): 24-29.
WANG D C, TAN S J, XU G Y, et al.Preparation and thermal properties of stearic acid/α-cnt/pmma composite microencapsulated phase change materials[J]. Acta energiae solaris sinica, 2019, 40(1): 24-29.
[13] ZHU Y L, QIN Y S, LIANG S E, et al.Nanoencapsulated phase change material with polydopamine-SiO2 hybrid shell for tough thermo-regulating rigid polyurethane foam[J]. Thermochimica acta, 2019, 676: 104-114.
[14] 方玉堂, 谢鸿洲, 梁向晖, 等. 聚苯乙烯-二氧化硅@十四烷复合纳米相变胶囊的表征及其乳液性能[J]. 化工学报, 2015, 66(2): 800-805.
FANG Y T, XIE H Z, LIANG X H, et al.Characterization of polystyrene-silica@n-tetradecane composite nano-encapsulated phase change material and its emulsion performance[J]. Journal of chemical industry and engineering, 2015, 66(2): 800-805.
[15] FANG G Y, LI H, YANG F, et al.Preparation and characterization of nano-encapsulated n-tetradecane as phase change material for thermal energy storage[J]. Chemical engineering journal, 2009, 153(1-3): 217-221.
[16] 尚建丽, 李乔明, 王争军. 微胶囊相变储能石膏基建筑材料制备及性能研究[J]. 太阳能学报, 2012, 33(12): 2140-2144.
SHANG J L, LI Q M, WANG Z J.Preparation and thermal performance tests of microencapsulated gypsum-based phase change building material[J]. Acta energiae solaris sinica, 2012, 33(12): 2140-2144.
[17] 尚建丽, 张浩, 董莉. 石膏基双壳微纳米相变胶囊复合材料制备及调温调湿性能研究[J]. 太阳能学报, 2016, 37(6): 1481-1487 .
SHANG J L, ZHANG H, DONG L.Preparation of composite material of gypsum-based double-shell micro-nano phase change capsules and performance research of temperature-humidity control[J]. Acta energiae solaris sinica, 2016, 37(6): 1481-1487.
[18] MOHAMMADI B, NAJAFI F S, RANJBAR H, et al.Nanoencapsulation of butyl palmitate in polystyrene-co-methyl methacrylate shell for thermal energy storage application[J]. Energy and buildings, 2016, 118: 99-105.
[19] YASUSHI Y, SUGENO T, ISHIGE T, et al.An evaluation of microencapsulated PCM for use in cold energy transportation medium[C]//Energy Conversion Engineering Conference, Washington, DC, USA, 1996.
[20] ALVARADO J L, MARSH C.Characterization of supercooling suppression of microencapsulated phase change material by using DSC[J]. Journal of thermal analysis and calorimetry, 2006, 86: 505-509.
[21] PETHURAJAN V, SIVAN S.Fabrication, characterisation and heat transfer study on microencapsulation of nano-enhanced phase change material[J]. Chemical engineering and processing-process intensification, 2018, 133: 12-23.
[22] ZHU K Y, WANG S, QI H Z, et al.Supercooling suppression of microencapsulated n-alkanes by introducing an organic gelator[J]. Chemical research in Chinese universities, 2012, 28(3): 539-541.
[23] ZHU Y L, LIANG S E, CHEN K P, et al.Preparation and properties of nanoencapsulated n-octadecane phase change material with organosilica shell for thermal energy storage[J]. Energy conversion and management, 2015, 105: 908-917.
[24] 陈大衡, 陈钢, 洪芳军, 等. 纳米胶囊潜热型功能流体制备及强化沸腾换热的实验研究[J]. 低温工程, 2017(3): 7-12,54.
CHEN D H, CHEN G, HONG F J, et al.Preparation and boiling heat transfer enhancement experimental research of nanocapsule latent functionally fluid[J]. Cryogenics, 2017(3): 7-12,54.
[25] LATIBARI S T, MEHRALI M, MEHRALI M, et al.Facile synthesis and thermal performances of stearic acid/titania core/shell nanocapsules by sol-gel method[J]. Energy, 2015, 85: 635-644.
[26] LI C E, YU H, SONG Y, et al.Experimental thermal performance of wallboard with hybrid microencapsulated phase change materials for building application[J]. Journal of building engineering, 2020, 28: 101051.
[27] 张军强, 王花枝, 杨志涛, 等. 棕榈酸/SiO2纳米胶囊的制备及其储热性能[J]. 功能材料, 2019, 50(11): 11065-11069.
ZHANG J Q, WANG H Z, YANG Z T, et al.Preparation and thermal energy storage properties of palmitic acid/SiO2 nanocapsules[J]. Journal of functional materials, 2019, 50(11): 11065-11069.
[28] ZHANG H Z, WANG X D, WU D Z.Silica encapsulation of n-octadecane via sol-gel process:a novel microencapsulated phase-change material with enhanced thermal conductivity and performance[J]. Journal of colloid and interface science, 2010, 343: 246-255.

基金

国家自然科学基金(51776095); 江苏省研究生科研与实践创新计划(SJCX21_0528)

PDF(3254 KB)

Accesses

Citation

Detail

段落导航
相关文章

/